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Introduction
Upon viral infection host pathogen recognition receptors, including 

the Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), detect the 
presence of foreign motifs referred to as pathogen-associated molecular 
patterns (PAMPs) and activate a signaling pathway that ultimately leads to 
the induction and expression of the type 1 interferons (IFN). This newly 
produced IFN establishes an antiviral state in surrounding cells that 
prevents virus replication. Therefore, induction of IFN gene expression 
and the activation of subsequent IFN signaling pathways is crucial to 
the ability of a host cell to mount an innate immune response [1]. To 
counteract these powerful antiviral responses many viruses have evolved 
elegant, and often multi-pronged, mechanisms by which they evade the 
innate immune response [2]. There has been a tremendous amount of 
research done to understand how different viruses block induction of the 
IFN gene by either preventing recognition by RLRs or suppressing the 
signaling pathways they activate. One well-studied member of the RLR 
family is the retinoic acid–inducible gene-1 (RIG-I). This cytoplasmic 
receptor primarily detects 5′ppp-RNA molecules with short secondary 
motifs of dsRNA or ssRNA [3,4]. In contrast, another cytoplasmic RLR 
referred to as MDA5 recognizes longer dsRNA motifs so that each 
RLR recognizes different viruses based on their respective PAMPs [5]. 
Following binding of viral RNAs, RIG-I and MDA5 interact with the 
mitochondrial membrane bound adaptor molecule MAVS (mitochondrial 
antiviral signaling protein, also referred to as IPS-1, VISA, or CARDIF), 
which activates two kinase complexes. The IκBKinaseɛ/ TANK Binding 
Kinase 1 (IKKɛ/TBK1) phosphorylate the transcription factors, interferon 
regulatory factors (IRF), IRF3 and IRF7, which then form homodimers 
or heterodimers, enter the nucleus and initiate transcription of IFNα/β. 
For clarity, it is worth mentioning that the type I interferons include a 

subgroup of interferon proteins that include IFNα/β. While IRF3 is 
constitutively expressed in most cells, IRF7 is an interferon stimulated 
gene (ISG) that is typically expressed at low levels but can be induced 
several-fold in response to IFN signaling. Therefore, it is thought that 
IRF3 mediates transcription of the majority of early IFN expression. The 
IKKα/IKKβ/IKKγ kinase complex phosphorylates IκBα, targeting this 
repressor protein of nuclear factor kappa B (NF-κB) for degradation. 
Following secretion outside of the initially infected cell, the IFN protein is 
recognized by target cells and initiates their IFN signaling pathways [1,6]. 
Ultimately this leads to the expression or upregulation of hundreds of 
ISGs, including IFN, pro-apoptotic factors, and cytokines which establish 
an antiviral state in surrounding cells [1,7]. 

This review will focus on how select RNA viruses evade the innate 
immune response. Specifically, we will focus on how the top eight emerging 
viruses, as identified by the World Health Organization [8], suppress RIG-
I-mediated induction of the IFN antiviral response as shown in Figure 1. 
In order to provide perspective, we also include information about how 
vesicular stomatitis virus (VSV), a well-studied non-human pathogen, 
evades the host immune response. VSV serves as a model for how non-
human pathogenic RNA viruses act in manners both similar to and 
different from the other emerging viruses. Taken together, the diversity of 
mechanisms employed by these pathogens to circumvent host defenses is 
remarkable. The similarities as well as the differences are striking.

Rift Valley Fever Virus and Crimean-Congo Hemorrhagic 
Fever Virus

Members of the Bunyaviridae family that are listed in the 2016 WHO 
list of emerging viruses include the zoonotic arthropod-borne Rift Valley 
fever virus (RVFV) and the Crimean-Congo fever virus (CCHFV). Both 
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of these viruses carry a tripartite negative sense RNA genome [9] and can 
cause severe disease in humans, including fulminating hemorrhagic fever 
[10,11].There are currently no prophylactic or therapeutic treatments 
available for these viruses [9]. The pathogenicity of these viruses is largely 
attributed to the ability of the multifunctional nonstructural protein NSs 
to inhibit global host cell transcription and to antagonize the IFN system 
[9,12-14].

Although RIG-I is activated upon recognition of RVFV RNA [15], IFN 
production is delayed in RVFV-infected animal models [13]. Several studies 
have demonstrated that the NSs protein utilizes several mechanisms to 
block IFN-β gene expression during early RVFV infection [13,16,17]. NSs 
was found to directly target IFN- β gene expression through its interaction 
with the cellular repressor protein Sin3A-associated protein 30 (SAP30), 
a subunit of the Sin3A/nuclear receptor co-repressor (NCoR)/histone 
deacetylase repressor complex. NSs simultaneously interacts with YY1, a 

transcription factor that regulates IFN-β gene expression [18]. YY1 directs 
the SAP30-NSs-YY1 complex to the IFN- β promoter site to form a multi 
protein repression complex on the promoter, which inhibits induction of 
the IFN-β gene [17]. RVFV NSs also indirectly down regulates IFN-β gene 
expression by shutting-off global host gene transcription by sequestering 
the p44 and XPD subunits of the TFIIH basal transcription factor 
[19]. NSs also inhibits host transcription by promoting the degradation of 
the TFIIH p62 subunit [20].

Similarly, IFN production and secretion is delayed during CCHFV 
infection [21,22]. A virally encoded protease processes the CCHFV 
genome to include a 5′ monophosphate (5′p) end [23], rather than the 
5′ppp and 5′pp ends strongly recognized by RIG-I [24]. Therefore it 
was proposed that due to this modification CCHFV RNA is not sensed 
by RIG-I [23,25]. However, recently it was established that RIG-I does 
mediate an IFN response to CCHFV [26]. In fact, immuno stimulatory 
RNA (isRNA) was isolated from infected cells as well as from virion 
preparations, and RIG-I co-immuno precipitation resulted in the isolation 
of CCHFV isRNA from infected cell lysates. These findings indicate that 
RIG-I signaling is critical to the activation of an antiviral response to 
CCHFV infection [26]. 

While the CCHFV protein that antagonizes RIG-I-dependent IFN 
production has not yet been identified, the viral L protein has been 
suggested as a potential candidate. In addition to functioning as the 
viral RNA dependent-RNA polymerase, the CCHFV L protein is a 
cysteine protease that contains a viral homologue to the ovarian tumor 
protease domain (OTU) [27], which allows the removal of conjugated 
poly-ubiquitin (Ub) and interferon-induced Ub-like protein (ISG15) 
from target proteins [28,29]. Viral proteases which contain this domain 
evade ubiquitin- and ISG15-dependent innate immune responses [27,30], 
therefore it is possible that the CCHFV OTU directly antagonizes the 
innate immune response. More research must be done to determine if the 
CCHFV OTU blocks RIG-I signaling and to identify which proteins in 
the RIG-I pathway are targeted for OTU-dependent de-conjugation of Ub 
and ISG15.

Ebola and Marburg Viruses
Ebolavirus (EBOV) and Marburg virus (MARV) are members of the 

Filoviridae family that infect primates. They can cause hemorrhagic fever 
and are among the most virulent pathogens known, with case fatality 
rates reaching 90% during some outbreaks [31]. Mortality is swift and 
follows the shock and subsequent multi-organ failure that results from 
hemorrhagic complications [32]. This virulence is attributed to virally 
encoded proteins that antagonize the ability of the host to mount 
an effective innate immune response, leading to uncontrolled virus 
replication. It has been demonstrated that EBOV VP24 and the MARV 
VP40 inhibit the IFN signaling pathway [33,34]. As this occurs during 
the later phase of the IFN response it will not be discussed further herein. 

In addition to its function as a polymerase cofactor and its role in 
viral assembly, the EBOV VP35 (eVP35) and MARV VP35 (mVP35) 
suppress innate immunity by targeting multiple steps in the RIG-I-
dependent induction of IFN gene expression [35,36]. Both eVP35 and 
mVP35 bind dsRNA [37] through a basic amino acid motif located in the 
highly conserved C-terminal IFN-inhibitory domain (IID). This binding 
sequesters the dsRNA from RIG-I surveillance and therefore prevents 
IFN production. The IID domain interacts with dsRNA in a sequence-
specific manner and was demonstrated to be essential for VP35-mediated 
inhibition of IFN production [38-41]. By binding to viral dsRNA, 
eVP35 inhibited activation of the IFN-β promoter normally induced 
by overexpression of RIG-I, MAVS, IKKε and TBK1 [37]. Mutation of 
dsRNA-binding residues led to a decrease in dsRNA binding [37,42]. 

Figure 1: Targeting of the RIG-I signaling pathway by emerging viruses-
Upon activation by cytoplasmic RNA, RIG-I is activated and interacts 
with MAVS. This initiates downstream signaling events that activate 
IRF3 and NF-κB, and ultimately results in induction of the IFNα/β 
gene. Many components in this pathway are inhibited by viral proteins, 
thereby suppressing the IFN response and enabling viral replication to 
occur. Viruses depicted above include Rift Valley fever virus (RVFV), 
Crimean-Congo hemorrhagic fever virus (CCHFV), ebolavirus (EBOV), 
Marburgh virus (MARV), Lassa fever virus (LASFV), Nipah virus (NiV), 
severe acute respiratory syndrome coronavirus (SARS-CoV), Middle 
East respiratory syndrome virus coronavirus (MERS-CoV) and vesicular 
stomatitis virus (VSV).
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Comparison of the crystal structures of eVP35 and mVP35 IIDs bound 
to dsRNA revealed that eVP35 interacts with both the phosphodiester 
backbone and caps the ends of dsRNA [40,43], while mVP35 was found 
to interact with the dsRNA backbone only [41]. Edwards and coworkers 
established that eVP35 was able to more strongly inhibit RLR signaling 
than mVP35. This correlated with induction of a more robust IFN 
response in MARV-infected cells as compared to EBOV-infected cells. 
These functional differences between eVP35 and mVP35 mapped to IID. 
Therefore the binding mode of both viral VP35s with dsRNA plays a 
significant role in the magnitude of the IFN response in filoviral-infected 
cells [44]. 

While VP35 has been shown to bind synthetic dsRNA molecules 
introduced in vitro [45], direct evidence that VP35 binds isRNA to limit 
RIG-I activation was lacking. Utilizing a Sendai virus (SeV) infection 
model and deep sequencing of purified eVP35-bound RNAs, Dilley and 
coworkers demonstrated that the SeV defective interfering (DI) RNA, 
a known activator of RIG-I, is the is RNA bound by eVP35 proteins in 
infected cells. Mutation of basic residues in the IID domain that were 
required for dsRNA binding and inhibition of IFN destroyed the ability 
of eVP35 to bind the SeV DI RNA. In addition, select host RNAs were 
preferentially bound by  wild type eVP35  in cell culture. These findings 
support the contention that VP35 binds viral isRNA to block the RIG-I 
pathway and thereby evade the IFN response [45]. VP35 also inhibits 
IFN production by targeting the RLR pathways in a dsRNA binding-
independent manner by interacting with key components of the RIG-I 
pathway. 

The IID was critical for the ability of eVP35 and mVP35 to block IRF3 
phosphorylation and activation by over expression of IKKɛ and TBK1, 
the kinases that activate this transcription factor [38,46]. In contrast, 
these viral proteins did not inhibit IFN-β promoter activation induced by 
expression of a constitutively active form of IRF3 [41,47]. Interestingly, 
eVP35 was found to target and bind to the N-terminal domain of both 
IKKɛ and TBK1 and was subsequently phosphorylated by these kinases. 
Overexpression of eVP35 and its interaction with IKKɛ and TBK1, 
sequesters them and impairs their normal interactions with IRF3, IRF7, 
and MAVS, and decreases the kinase activity in cells transfected with 
IKKɛ [47]. Taken together, these findings indicate that VP35 can act as 
a decoy substrate for the TBK1-IKKε complex, thereby impairing IRF3 
phosphorylation through its normal interaction with TBK1 and IKKɛ 
[37,47]. 

Expression of wild-type eVP35 also interferes with the ability of RIG-I 
to interact with PACT, a cellular dsRNA binding protein that is an essential 
coactivator of RIG-I [48]. Mutations in the eVP35 IID domain prevented 
eVP35-PACT binding and limited the ability of eVP35 to inhibit PACT-
mediated activation of RIG-I. Cells in which PACT had been knocked 
down were defective for IFN induction and were insensitive to eVP35 
activity [49].

It has been shown that TLR and RIG-I signaling covalently conjugates 
SUMO molecules to both IRF3 and IRF7 and this modification was 
correlated with reduced IFN transcription [50]. In addition, physical 
interaction of eVP35 with IRF3 and IRF7 led to their sumoylation. This 
modification inhibited the transcriptional activity of these IRFs and the 
downstream expression from the IFN-β promoter [51].

Lassa Fever Virus
Like other members of the Arenaviridae family, Lassa fever virus 

(LASFV) is an enveloped negative-sense RNA virus that carries a bi-
segmented genome [52]. LASFV is endemic in several West African 
countries where there are between 300,000-500,000 cases annually. 

This virus can cause fatal hemorrhagic fever in humans, resulting in 
approximately 5,000 deaths per year [53-56]. The pathogenesis of LASFV 
is associated with the ability of this virus to specifically target dendritic 
and endothelial cells [57,58]. In addition, LASFV is able to suppress the 
induction of host IFNs. 

While the 5′-ppp dsRNA associated with the LASFV genome activates 
the RIG-I pathway [23], the virally encoded protein, NP, was identified 
as an IFN antagonist [59-61]. By inhibiting IRF3 phosphorylation, the 
multifunctional NP suppresses IFN induction [60,62]. This function of 
the LASFV NP is dependent on its intrinsic 3′–5′ exoribonuclease (ExoN) 
activity, which digests free dsRNA and thereby prevents RIG-I recognition 
of that non-cellular nucleic acid [63,64]. Mutations in the exoribonuclease 
active site dramatically reduced this activity and abrogated the ability of 
the LASFV NP to inhibit viral- or synthetic polyI:C-induced activation of 
the IFNα/β promoter in vitro [63-65]. Importantly, residues essential for 
NP-mediated IFN inhibition are highly conserved among all arenaviruses, 
indicating that this function too is conserved across all members of this 
viral family [63,65,66]. A robust, RIG-I dependent, innate immune 
response was activated in cells infected with a recombinant LASFV in 
which the ExoN function was abolished. These results correlate with earlier 
in vitro studies and underscore the essential role of the NP exonuclease 
activity in suppression of innate immunity during LASFV infection [67].

This same region within the NP protein was found to antagonize 
induction of IFN gene expression by inhibiting the nuclear translocation 
and transcriptional activity of NF-κB [68] and by blocking the autocatalytic 
activity of IKKɛ. By binding to the kinase domain of IKKɛ, NP inhibited 
the ability of the kinase to phosphorylate, and therefore activate IRF3. This 
NP-IKKɛ interaction also prevented IKKɛ from interacting with MAVS, 
thereby blocking the RIG-I pathway [69]. Interestingly, mutation of the 
same NP residues that are critical for its 3′–5′ exoribonuclease activity 
perturbed the interaction of NP with IKKɛ[69]. 

Nipah Virus
Nipah virus (NiV), also identified as an emerging virus, is a lethal 

pathogen that causes death in up to 70% of infected humans [70]. This 
virus infects both bats and humans but most likely originated in the former 
[71]. While other paramyxoviruses, such as Hendra virus, also use bats as 
a natural reservoir they do not all infect both bats and humans [72]. In 
fact, Hendra virus and NiV may be the only two and they are both lethal 
in humans [73]. One study suggested that bat to human transmission, and 
therefore the risk of human infection, is increased in those individuals 
who drink tree sap [71]. Other studies have elucidated the mechanisms 
employed by NiV to evade host innate immune responses.

When Pteropus vampyrus bat kidney (PVK) cells are infected with the 
related avian Newcastle disease virus (NDV), Glennon and coworkers 
observed an increase in expression of the genes encoding IFN, the GM-
CSF and IL-2 inhibitory factor I (GIF-I) and MDA5, among others [74]. 
In contrast, when those same cells are infected with NiV these genes 
are not upregulated, suggesting that NiV, perhaps uniquely, antagonizes 
expression of these host genes to facilitate viral replication. Suppression 
of IFN expression is most likely achieved by the viral accessory proteins 
V, W and C [75]. Similar responses involving the viral C protein have 
been observed in cells infected with measles virus [76]. In that system 
the suppression is most likely achieved by a combined mechanism that 
includes suppression of Janus Kinase 1 (jak1) phosphorylation and 
associated effects of the viral C protein [77]. The diversity observed in the 
ways different paramyxoviruses suppress host antiviral responses suggests 
that not only are their biological differences interesting but potential 
therapeutic approaches must be targeted to specific viral pathogens.
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Severe Acute Respiratory Syndrome and Middle East 
Respiratory Syndrome Viruses

The Severe Acute Respiratory Syndrome Corona Virus (SARS-CoV) 
was first identified in 2002 in China as the causative agent in those affected 
individuals presenting with respiratory complications after exposure to a 
single health care worker [78]. Within eleven weeks of the first incidence 
in neighboring Hong Kong, the virus had spread to at least 27 countries 
or distinct political entities with nearly one fourth of the reported cases 
occurring among health care workers [79]. A wide range of fatality rates 
have been reported and not surprisingly they vary by location and they 
decrease over time [80,81]. The Middle East Respiratory Syndrome 
coronavirus (MERS-CoV) is another highly pathogenic member of this 
family. This lethal virus appears to be carried by Dromedary camels and is 
transmitted directly from them to humans [82]. When discovered in 2012 
the virus displayed a nearly 37% mortality rate [82].

Patients with severe SARS disease displayed dysregulated IFN, ISGs and 
cytokine responses [83]. Similarly, MERS-CoV-infected cells exhibited 
reduced IFN and cytokine expression, blocked IRF3-mediated induction 
of the IFN response and upregulation of RIG-I, IRFs and other genes 
associated with innate immunity [84-86]. Taken together, these findings 
strongly suggest that the extreme virulence of SARS-CoV and MERS-
CoV is related to their ability to evade the host innate immune response. 

SARS-CoV may hide its dsRNA from detection by RIG-I by replicating 
in “inner vesicles” within the lumen of a virus-induced reticulo vesicular 
network of modified endoplasmic reticulum (ER) membranes. The viral 
replicase (composed of the nsp3, nsp5, and nsp8 proteins) as well as 
the viral genomic RNA co-localize to these double membrane vesicles 
(DMVs), providing evidence that SARS-CoV replicates in this membrane 
network. The interior of these DMVs label for SARS-CoV dsRNA, 
therefore this virus forms DMVs to coordinate its replication and also hide 
replicating RNA from RLRs. The nsp4 viral replication protein appears to 
direct this membrane rearrangement, as its mutation alters assembly of 
these DMVs [87]. Interestingly, a similar phenomenon was observed in 
MERS-CoV-infected cells [88], indicating that at least two coronaviruses 
hide their dsRNA inside DMVs, avoiding detection by the host [89]. The 
SARS-CoV nucleocapsid (N) protein may suppress IFN production via 
a similar mechanism. Studies indicate that the N protein suppresses IFN 
signaling by targeting an early step in the pathway [90,91] and binds to 
dsRNA [51,92]. Therefore the N protein likely plays a key role in blocking 
the innate immune response [91] by shielding dsRNA from recognition 
by RIG-I. The SARS nsp14 protein contains a 3’-5’ exoribonuclease 
domain, therefore this protein may function to limit the IFN response 
by degrading viral dsRNA replication intermediates. Indirect support for 
this notion comes from studies of the LASFV encoded NP which contains 
a similar exonuclease domain. Mutation of critical residues within this 
domain abrogated the ability of LASFV NP to inhibit induction of the 
IFNα/β promoter [63-65]. While it is conceivable that the SARS-CoV 
nsp14 protein suppresses the IFN response by degrading dsRNA, further 
work is required to determine if this is indeed the case. Nevertheless, it is 
interesting that similar approaches are employed by viruses from different 
families. In this case an arenavirus and a coronavirus.

Several other proteins encoded by SARS-CoV antagonize the RIG-I 
signaling pathway. For example, the ORF9b protein suppresses innate 
immunity by targeting mitochondria and MAVS/TRAF3/TRAF6. 
Expression of ORF9b altered the mitochondrial morphology and 
subcellular localization of MAVS. The presence of ORF9b also led to the 
ubiquitination and degradation of MAVS, accompanied by a loss of TRAF3 
and TRAF6, two key components of the RIG-I signaling pathway [93]. The 
SARS-CoV ORF3b and ORF6 proteins limit RLR-mediated induction 
of IFN. ORF3 localized to the mitochondrial outer membrane and may 

therefore inhibit MAVS at the mitochondria or at a point downstream 
of MAVS [90,94]. In contrast, ORF6 localized primarily to the ER and 
Golgi apparatus and may disrupt the ER/Golgi transport necessary for 
the IFN response [90]. The SARS-CoV M protein inhibits induction 
of IFN by binding to TRAF3 and impeding the formation of a TRAF-
·TANK·TBK1/IKKɛ complex, thereby inhibiting TBK1/IKKɛ-dependent 
activation of IRF3 and IRF7 [95]. Finally, the papain–like protease (PLP) 
domain of the SARS-CoV nsp3 protein interacts with STING and disrupts 
the dimerization and activation of this adaptor molecule. Inactive STING 
is unable to recruit MAVS to the TBK1-IKKɛ complex, therefore these 
kinases do not phosphorylate IRF3 and IFN gene expression is not 
induced. The PLP domain of nsp3 also disrupts NF-κB signaling, possibly 
by a similar mechanism [96] and it expresses a deubiquitinating activity 
that removes Ub from key components of the pathway, including RIG-I, 
STING, TBK1 and IRF3 [96,97]. 

Expression of the MERS-CoV ORF4b antagonizes the host IFNα/β 
expression that is normally upregulated in response to viral infection 
[98]. The accessory protein encoded by ORF4b, termed p4b, acts in both 
the cytoplasm and the nucleus [99]. Interestingly, Yang and coworkers 
demonstrated that in the cytoplasm p4b binds to TBK1 and IKKɛ, thereby 
suppressing molecular interactions between MAVS and IKKɛ, while 
inhibiting the phosphorylation of IRF3 [98]. When in the nucleus, the 
same protein inhibits the IRF3 and IRF7 induced expression of IFN-β. 
However, ablation of the protein’s nuclear localization signal eliminated its 
ability to inhibit IFN- β expression but not the IFN- β expression induced 
by RIG-I, TBK-1, MAVS, MDA5 and IKKɛ. This suggests that p4b 
employs multiple approaches to inhibit IFN- β in both the cytoplasm and 
the nucleus, no doubt contributing to the observed viral pathogenicity. 
Interestingly, the MERS-CoV M protein is able to interact with TRAF3 
which hampers the TRAF3-TBK1 interaction and therefore leads to a 
decrease in IRF3 activation. The N-terminal transmembrane domain of 
the MERS-CoV M protein is sufficient for interaction with TRAF3 [100], 
which is similar to what has been shown for the SARS-CoV M protein 
[101].

Vesicular Stomatitis Virus
While not on the WHO list of emerging viruses, VSV is a well-studied 

member of the Rhabdoviridae with a host range that includes insects, 
cattle, horses and pigs, and it serves as an excellent model system to study 
the interplay between viruses and the IFN responses of their hosts. The 
absence of IFN induction in wild type virus infected cells is thought to 
result from the presence of one or more virally encoded IFN suppressors 
that presumably are defective in IFN-inducing viruses [102]. One of these 
suppressors is the matrix (M) protein which is crucial for many of the 
cytotoxic effects associated with VSV infection, including the down-
regulation of global host gene expression [39,78,103] and inhibition of the 
nuclear-cytoplasmic transport of host mRNAs [9,11,104]. The M protein 
has been shown to inhibit host transcription [39,103] and suppress IFN-β 
gene expression in the absence of other viral components [78]. Therefore, 
several researchers have proposed that VSV evades the IFN response by 
an M-mediated “shut-off ” of host gene expression. In support of this 
hypothesis there is a strong correlation between the virus’s ability to 
inhibit host gene expression and its ability to suppress IFN expression.

Wild type VSV rapidly inhibits host RNA and protein synthesis and is 
a poor inducer, or non-inducer, of IFN [22]. In contrast, the VSV mutant 
strain T1026R1 [103], which contains a single amino acid mutation at 
position 51 (M51R) of the M protein [105], is delayed in its ability to 
inhibit host RNA and protein synthesis [106] and is an excellent inducer 
of IFN [21,30]. A recent study indicates that the M protein either in the 
context of viral infection or when expressed alone is able to block viral-
mediated activation of NF-κB by targeting a step in the canonical NF-κB 
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Hemorrhagic Fever Virus. J Virol 89: 10219-10229.
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et al. (2007) Ovarian tumor domain-containing viral proteases evade 
ubiquitin- and ISG15-dependent innate immune responses. Cell Host 
Microbe 2: 404-416. 

28. Capodagli GC, McKercher MA, Baker EA, Masters EM, Brunzelle 
JS, et al. (2011) Structural Analysis of a Viral Ovarian Tumor Domain 
Protease from the Crimean-Congo Hemorrhagic Fever Virus in 
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and interferon-stimulated gene 15 by a viral ovarian tumor domain-
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ISG15 pathway: an ongoing virus-host battle. Trends Microbiol 21: 
181-186. 

31. Mire CE, Geisbert JB, Marzi A, Agans KN, Feldmann H, et al. (2013) 
Vesicular stomatitis virus-based vaccines protect nonhuman primates 
against Bundibugyo ebolavirus. PLoS Negl Trop Dis 7: e2600. 

pathway, and the M51R mutation abrogates this function [107]. These 
results imply that the VSV M protein encodes two suppressors of IFN 
gene expression; the well-described ability to inhibit host gene expression 
as well as the ability to suppress induction of the IFN-β promoter by 
specifically interfering with the NF-κB pathway. This is similar to the 
molecular strategies used by the RVFV NSs protein, which inhibits 
IFN gene expression indirectly by inhibiting global host transcription 
and directly by forming a multiprotein repression complex on the IFN 
gene promoter.

Conclusion and Recommendation
Many of the emerging viruses discussed herein are lethal to humans. 

While VSV is not lethal, it serves as a well-studied model of virus infection 
and host immune detection and has revealed mechanisms of host innate 
immune evasion that are seen in other viruses. Interestingly, even within 
families of viruses the approaches used by the individual viruses to thwart 
host innate immune surveillance vary. In contrast, some approaches are 
shared among viruses of different families. Taken together, this tangled 
story of host immune evasion by disparate RNA viruses makes the 
prospect of using a single therapeutic approach impossible. Therefore it 
is imperative that we better understand the specific interactions between 
virally-encoded proteins and those of their hosts in order to develop life-
saving therapies.
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