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Introduction
HBV is a non-cytopathic hepadnavirus transmitted prenatally, sexually 

and percutaneously. More than 350 million people are chronically infected 
worldwide and 1million die from infection annually as a result of hepatic 
cirrhosis and hepatocellular carcinoma (HCC) [1,2]. Amongst four 
HBV partially overlapping open reading frames is the smallest hepatitis 
B virus X (HBx) gene that encodes 154 amino acid regulatory protein 
[3]. HBx protein is a transcriptional transactivator that is required to 
initiate and maintain virus replication [4]. It promotes viral propagation 
and ultimately HBV-related malignant transformation by abnormally 
regulating several cellular pathways, which are involved in DNA repair, 
cell growth, differentiation, adhesion, proliferation and apoptosis [5-9]. 
This review highlights various molecular mechanisms which HBx protein 
utilises in promoting HBV-induced HCC.

Transcriptional Transactivation Activities of HBx Protein 
and Hepatocarcinogenesis

Dysregulated apoptosis is a phenotypic feature of HBV-related 
hepatocarcinogenesis. HBV-induced DNA damage often triggers localised 
apoptotic-related signals resulting in tissue necrosis. This process enables 
the elimination of damaged, unwanted and redundant hepatocytes that 
may otherwise lead to uncontrolled cell growth, proliferation and liver 
disease [10,11]. Aberrant regulation of cell proliferation and apoptosis 
has been identified as the consequence of abnormal inactivation or 
activation of gene transcription in HBV-induced HCC [10]. Although 

the underlying mechanism remains unknown, HBx protein may inhibit 
apoptosis by blocking the transactivation of caspase cascade 3, nuclear 
factor kappa B (NF-κB) and phosphatidylinositol 3-kinase (PI3K) signal 
transduction pathways [12-14]. For instance, HBx protein inhibits Fas-
mediated apoptosis of hepatoma cells by upregulating mFAS/FasL, sFas 
and NF-κB (Figure 1) [10,15]. On the other hand, interaction of HBV 
x-associated protein with protein kinase C was shown to induce apoptosis 
by switching on the transcription factor NF-κB [16,17]. Being localised in 
the cytoplasm, HBx protein also has the ability to sensitize HBV-infected 
cells towards FLICE-like inhibitory protein (FLIP), jun amino-terminal 
kinases (JNK), caspases 3 and 9 pro-apoptotic pathways and induce 
apoptosis [18]. HBx exerts its oncogenic properties and causes HCC 
in nude mice by transforming the non-transformed immortalized liver 
cell line QSG7701 [19]. HBx also communicates with mitogen activated 
protein kinases/extracellular signal regulated kinases (MAPK/ERK) 
signalling and activates PI3K/Akt pathway to transform cells leading 
to c-myc-mediated cell survival through inhibition of HBx-induced 
apoptosis (Figure 1A) [20,21]. This may influence HBV replication by 
abnormally regulating various cellular processes such as DNA repair, cell 
growth, differentiation, adhesion, and proliferation, which may promote 
hepatocarcinogenesis [10,15,22-24].

HBx and transforming growth factor beta 1
Transforming growth factor beta (TGF-β), encoded by TGF-β gene, is 

required for wound healing and hepatic tissue repair. It regulates several 
cellular functions including cell growth, differentiation, apoptosis and 
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homoeostasis [25]. TGF-β belongs to the TGF super family that includes 
various isoforms: TGF-β1, TGF-β2 and TGF-β3 [26]. TGF-β1 is a cytokine 
that is produced in response to liver injury by activated hepatocytes, 
platelets and Kupffer cells [27]. As a transcriptional transactivator, HBx 
protein suppresses TGF-β-induced apoptosis through activation of PI3K 
pathway that contributes to hepatocarcinogenesis by cross-talking with 
other pathways such as AKT/mTOR and Ras/MAPK (Figure 1A) [28]. 
HBx-mediated upregulation of TGF-β1 and downregulation of α2-
macroglobulin promotes proliferated hepatic stellate cells leading to 
HBV-related fibrosis [11,27,29]. Upregulation of TGF-β1 correlates with 
the mutation and loss of mannose-6-phosphate/IGF-II receptor that 
mediates TGF-β1 activation leading to HBV-induced HCC [30-32]. Liu 
and co-authors have shown that HBV promotes hepatocarcinogenesis in 
BALB/c mice through upregulation of SMAD7 and inhibition of TGF-
β-induced apoptosis [33]. In human hepatic stellate cells, upregulation 
of TGF-β1 and its downstream mediator of fibrogenic action known as 
connective tissue growth factor lead to enhanced cell proliferation and 
progressive fibrosis [34].

HBx and vascular endothelial growth factor
HCC was recently labelled a hypervascular tumour due to its 

association with vascular endothelial growth factor (VEGF)-mediated 
activities that promotes vasculogenesis and angiogenesis [35]. Activation 
of COX-2-mediated PGE2 enhances the expression of VEGF and 
tumour angiogenesis in HBV-related HCC [36]. In dysplastic nodules 
of hepatocarcinogenesis, upregulation of VEGF-A and its co-operating 
receptors FIK-1 and hypoxia-inducible factor-1 alpha (HIF-1α) promote 
angiogenesis and support sustained growth of these precursor lesions 
contributing to the formation of hepatic cancer and metastases [37]. 
Production of VEGF occurs via activation of several pathways including 
mTOR, IκB kinase β (IKKβ), NF-κB, ribosomal protein S6 kinase 1 and 
Rac (Figures 1A and 1B) [37-41]. HBx-induced expression of VEGFR-3 
splice variant in HCC patients correlates with tumour aggressiveness, 
tumour relapse and poor prognosis [42].

HBx and interleukin-8
Interleukin-8 (IL-8) is a leukocyte chemotactic activating cytokine 

secreted in response to an inflammatory stimulus by macrophages, 
endothelial and epithelial cells. IL-8 may function as a regulatory factor 
within the tumour environment and it is implicated in various cellular 
signalling including cell growth, proliferation, angiogenesis and migration. 
Upregulation of IL-8 in chronic HBV infection has been observed, and it 
was found to correlate with interferon-alpha therapy resistance, advanced 
liver inflammation and fibrosis [43,44]. Previous studies have shown that 
HBx protein increases the expression of IL-8 by interacting with NF-κB 
and CCAAT enhancer-binding protein (C/EBP)-like cis elements [45]. C/
EBP-like cis element regulates the expression of COX-2, another protein 
implicated in HBx transcriptional transactivation activity. Overexpression 
of COX-2 significantly correlates with increased HBx protein in HCC, 
suggesting that COX-2 may be hijacked in influencing HCC-related 
micro angiogenesis and metastases [46]. This may be explained by the 
co-operative network and triple effects of IL-8, IL-29 and COX-2 when 
upregulated in response to increased viral replication in chronic HBV-
infected patients and hepatoma cultured cells. It appears that HBV induces 
a differential regulatory network of inflammatory responses in which 
IL-29, IL-8 and COX-2 regulate one another. In this way, upregulation 
of IL-29 by HBV activates IL-8 that in turn suppresses IL-29 production 
(Figure 1B). This enhances the translocation of cAMP response element 
binding (CREB) and C/EBP transcription factors from cytosol to nucleus 
by stimulating ERK and JNK signalling pathways, which activate COX-
2 and PGE2 production leading to enhanced HBV replication associated 

with severe inflammation and tumorigenesis. COX-2 also represses the 
production of IL-8, and IL-29 induces antiviral factors protein kinase 
R and 2’-5’ oligoadenylate synthetase leading to suppressed HBV 
replication [47].

HBx and p53 protein
HBx protein contributes to hepatocarcinogenesis by blocking p53-

mediated cellular processes that are important for maintaining the 
genomic integrity of hepatocytes [48,49]. In normal circumstances, p53 
regulates apoptosis by interacting with cytoplasmic transcription factors 
such as repair cross-complement in grodent-repair deficiency group 2, 
xanthoma pigmentosa B, fatty acid synthase, p21CIPWARF1, and ankyrin-
repeat containing and proline-rich region-containing proteins (ASPP). 
These transcription factors are implicated in the p53-mediated nucleotide 
excision repair and enhance the binding of p53 gene to proapoptotic 
stimuli [13,50-52]. Suppression of p53 protein-mediated apoptosis also 
occurs via activation of cyclooxygenase 2 (COX-2)-prostaglandin E2 and 
McI-1 anti-apoptotic pathways (Figure 1C). In cultured hepatic oval cells, 
HBx protein promotes cell proliferation by enhancing the expression 
of Let-7a-microRNA, signal transducer and activator of transcription 
3 (STAT3) and cyclin D1 though activation of MAPK/ERK and P13K-
dependent signalling pathways [24]. Interaction of HBx protein and p53 
mutant correlates with progressive tumour formation driven by the 
activation of MYC, JNK, VEGF and phosphatase and tensin homolog 
(PTEN) through PI3K/AKT pathway [53]. Inhibiting the transcription 
activities of HBx protein could lead to suppressed tumour initiation, 
growth and metastases.

HBx protein and survivin-HBXIP complex
Several studies demonstrate that anti-apoptotic protein survivin 

forms a complex with hepatitis B-X interacting protein (HBXIP), 
and that this complex interacts with HBx protein in contributing to 
hepatocarcinogenesis. Survivin is an anti-apoptosis gene expressed in 
various human malignancies, and its upregulation is implicated in HBx-
associated HCC [54-56]. HBXIP is a conserved 18 kDa ubiquitous protein 
that was first discovered as a binding partner for HBx protein, and it 
negatively regulates HBx protein activity leading to disruption in the HBV 
replicative cycle [56]. Mouse studies have shown that HBXIP is required 
for hepatocyte growth and survival; it functions as a binding partner for 
survivin [57]. HBx protein interacts with survivin-HBXIP complex and 
correlates with dysregulated centromere dynamics and mitotic spindle 
formation (Figure 1C) [58]. This interaction was found to supress caspase 
activation, modulate p53 checkpoints and control spindle formation and 
proper kinetochore attachment cell division in a survivin-dependent 
manner that exacerbates hepatocarcinogenesis. HBx protein interacts with 
survivin-HBXIP complex and promotes cell cycle arrest and suppressed 
hepatoma cell growth through mechanisms that modulate oncoprotein 
HBXIP and tumour suppressor miR-520b [57,59,60]. Hu and co-authors 
[61] have shown that miR-520b impedes breast cancer cell migration by 
targeting andregulating the expression of IL-8 and HBXIP. Following this 
line of evidence, deactivation of mitogen-activated protein kinase kinase 
2 (MEKK2) and cyclin D1 resulted in the downregulation of miR-520b 
and hepatoma cell proliferation in HCC, suggesting potential therapeutic 
targets [62]. In contrast, HBx protein upregulates MEKK2 through 
activation of transcription factor AP-2 alpha (TFAP2A) and sphingosine 
kinase 1 (SPHK1), and this leads to tumour aggressiveness [63,64]. 
MEKK2 is a member of the MAPK signalling pathway that activates the 
JNK/MAPK pathway and ERK5 leading to regulation in tumour growth 
and metastasis [64].

HBx and damage-specific DNA binding protein 1
Damage-specific DNA binding protein 1 (DDB1) is the well-

characterised binding partner of HBx protein that may contribute towards 
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promoting viral replication, and their interaction was found to be conserved 
in all mammalian hepadnaviruses including woodchucks [65,66]. DDB1 
is a 127kDa protein that binds to DDB2, a protein that facilitates its 
transportation in the nucleus. This binding forms a heterodimeric DNA-
damage binding complex that functions in nucleotide-excision repair 
pathway and recognises the DDB2 ultraviolet-induced DNA damage. 
DDB1 also serves as an adaptor for the culin 4 (CUL4)-DDB1 ubiquitin 
E3 ligase complex that ubiquitinates and degrades substrate proteins by 
the proteasome contributing to hepatocarcinogenesis [67,68]. Although 
they enter the nuclear compartment separately, HBx protein interacts 
with DDB1 to activate viral replication by interfering with hepatocyte 
viability in cell culture. Interaction of HBx and DDB1 protein was thought 
to interfere with CUL4-DDB1 ubiquitin E3 ligase complex and cause 
genome instability by inducing apoptosis or cell proliferation associated 
with aberrant chromosome segregation (Figure 1D) [69,70]. However, 
a recent study has shown that there were no differences in the levels of 
HBV DNA replication in cells transfected with DDB1 expression plasmid 
carrying a wild-type HBx replicon as compared to the one with X-null 
HBx replicon [71]. This study suggested that DDB1 interacts with HBV 
covalently closed circular DNA (cccDNA) and promotes viral replication 
via an unknown mechanism that does not involve interaction with HBx 
protein. Interaction of DDB1 with DDB2 could also induce transcriptional 
activation either by being directly recruited to the cccDNA by the p300/
CBP histone acetyltransferase (HAT) or by acting as a transcriptional 
factor that interacts with E2F1 and Sp1 transcription factors which disrupt 
cell cycle control [72-74].

Effects of HBx-induced Epigenetic Alterations in 
Hepatocarcinogenesis

Epigenetics is a non-mutational alteration of gene expression that 
occurs through epigenetic marks or tags such as methylation of DNA 

and covalent modification of histones proteins [75,76]. DNA methylation 
attaches the methyl groups to the nucleotide sequence via catalysis by 
several DNA methyltransferases (DNMTs). Histone modifications either 
add or remove chemical groups to or from histones via histone modifying 
enzymes such as HATs and histone deacetylases (HDACs). HBx protein 
has been shown to trigger aberrant epigenetic signatures that influence 
HBV-induced hepatocarcinogenesis [77-79]. However, the precise 
mechanisms of action are still being elucidated.

Tumour suppressor genes are often aberrantly repressed due to DNA 
hypermethylation. This type of epigenetic lesion describes an addition 
of methyl group in the 5’-methylcytosine of gene promoter regions [80]. 
HBx gene has been repeatedly reported to be frequently integrated and 
preferentially maintained in patients with HBV-related HCC. HBx protein 
induces the hypermethylation of several tumour suppressor genes by 
modulating the transcriptional activation of DNMTs that result in the loss 
of gene expression and normal functions leading to hepatocarcinogenesis 
[81-88]. Several promoter regions encoding ASPP, retinoic acid receptor 
β2 (RARβ2), insulin-like growth factor binding 3 (IGFB3), caveolin-
1(Cav1), long interspersed nuclear elements-1(LINE1), retinoblastoma 
(pRB), E-cadherin, glutathione S-transferase P1(GSTP1) and human 
telomerase reverse transcriptase (hTERT) tumour suppressor genes have 
been shown to be repressed via HBx-induced DNMT1 and DNMT3A 
hypermethylation (Figure 2) [81-88]. HBx-induced hypermethylation 
may disrupt cellular signalling pathways such as ubiquitination, DNA 
repair, transcription, proliferation and apoptosis accompanied by tumour 
development, aggressiveness and metastases (Figure 2) [81-88]. HBx-
mediated downregulation of secreted frizzled-related protein (SFRP)-
1 and SFRP5 in HBV-related HCC tissues was significantly associated 
with upregulation of DNMT1 that led to poor tumour differentiation 
by disrupting Wnt pathway. Silencing the expression of DNMT1 with 
methylation inhibitor restored SFRP1 and SFRP5 expression leading to 

Figure 1: Mechanisms underlying how HBX protein transcriptionally transactivates various cellular genes leading to disruption in multiple biological 
processes that are critical for the development of HBV-induced hepatocellular carcinoma. (A) Production of TGFβ2 and VEGF via activation of several 
pathways including PI3K, mTOR, IκB kinase β (IKKβ), NF-κB, ribosomal protein S6 kinase 1 and Rac. (B) Regulation of IL-8 and IL-29 through ERK and 
JNK signalling pathways. (C) Suppression of p53 protein-mediated apoptosis via activation of HBx-survivin-HBXIP complex. (D) Induction of apoptosis 
or cell proliferation associated with aberrant chromosome segregation through interaction of HBx and DDB1 protein
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inhibition in HCC growth and regression of HBx-induced EMT [89]. 
DNA hypomethylation signifies the loss of methylation that affects 
mostly repeated sequences and it is accountable for the global DNA 
hypomethylation that is frequently observed in several malignancies. 
In contrast to DNA hypermethylation, hypomethylation correlates with 
activation of proto-oncogenes. Upregulation of insulin-like growth factor 2 
(IGF2) oncogene via HBx-induced hypermethylation coincides with poor 
clinical outcome in HCC patients [90].

DNA methylation can collaborate with histone modifications and alters 
hepatic gene expression synergistically. Silence in DLEC 1 gene expression 
is mediated by both DNA hypermethylation and histone acetylation 
[86]. HBx-induced expression of deleted in lung and esophageal cancer 
1 (DLEC 1) gene via activation of HATs leads to suppression of tumour 
progression [91]. Through the activation of DNMT1 expression mediated 
by the pRB-E2F pathway, HBx protein induces DNA hypermethylation 
of DLEC1 gene and suppresses its transcriptional activities [91]. HBx 
protein also allows the establishment of active chromatin by interacting 
with lysine specific histone demethylase 1 (KDM1A) and su(var) 3-9, 
enhancer of zeste, trithorax 1A (SET1A) enzymes which trimethylate 
H3K4, an epigenetic mark associated with active transcription [92]. HBV 
cccDNA is tightly packed in the nucleus as an episomal DNA, and it is 
required for viral persistence and replication. HBV cccDNA is packaged 
into minichromosomes by histone and non-histone proteins [93,94]. 
It has recently been shown that HBx protein activates SET domain 
bifurcated 1 and recruits heterochromatin protein 1 leading to silence in 
the transcription of HBV cccDNA via trimethylation of H3 on lysine 9 
(H3K9me3) [95]. It is evident that HBx protein regulates HBV replication 
and transcription by remodelling minichromosomes.

Cooperative networking between DNA methylation and non-
coding miRNA (miR) in regulating gene expression and promoting 
hepatocarcinogenesis has also been repeatedly reported [62,96]. HBx 
protein promotes hepatocarcinogenesis by inducing hypermethylation 
via activation of DNMTs and silencing gene transcription in the promoter 
region of tumour suppressor genes such as miR-21, miR-101, miR-152 
and miR-205 (Figure 2) [61,62,97,98]. Suppressed expression of miR-
205 was associated with HBx-enhanced hepatocyte transformation and 
proliferation that favour malignant transformation and subsequently 
cancer development [99]. Upregulation of HBx-induced miR-21 leads to 

the loss of programmed cell death 4 gene expression and normal function 
in HCC patients, providing another novel insight into mechanisms 
underlying HBV-related HCC pathogenesis [96].

Summary
As a multifunctional protein, HBx exerts its actions by either interacting 

with key transcriptional factors or epigenetically regulating tumour 
suppressor genes that are critical for HBV-related hepatocarcinogenesis 
and metastases. Current literature shows HBx protein triggers epigenetic 
abnormalities and disrupts cellular signalling pathways that favour 
uncontrolled hepatocyte proliferation, development of HBV-induced 
inflammation, fibrosis and cancer. Despite the reported evidence, the 
role of HBx protein in the pathogenesis of HBV-related HCC still 
remains enigmatic and therefore warrants further investigation that will 
characterise the structure and functions of this protein. This will provide 
insight into molecular mechanisms underlying the role of HBx protein as 
an epigenetic and gene transcription regulator.
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