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Introduction
Dengue virus (DENV) belongs to the Flavivirus genus and Flaviviridea 

family that comprises four unique serotypes viz., DEN-1 to DEN-4. 
It causes dengue hemorrhagic fever, an infectious disease in most of 
the tropical countries. Rapid onset of fever, joint and muscle pains, 
headache and appearance of rashes are the immediate symptoms upon 
infection [1,2]. Transmission of DENV is particularly by Aedes aegypti, 
a mosquito that commonly spread the viruses responsible for dengue 
fever, chikungunya, yellow fever, etc in tropical and subtropical regions. 
Dengue virus type 2 (Den2) is the common one of the four serotypes and 
its genome is a stretch of 10,732 nucleotides in the form of single-stranded 
positive-sense RNA. It encodes a poly protein precursor of 3,391 amino 
acids in length [3,4]. It is organized in the form of C-prM-E-NS1-NS2A-
NS2B-NS3-NS4A-NS4B-NS5 including three structural proteins (C, prM 
and E) and seven non-structural proteins (NS) [5,6]. The discussions on 
the functional aspects of the Dengue NS2B/NS3 protease, its structural 
properties, drug design strategies, and resulting inhibitors are available 
in the literature [7-9]. In addition, the crystal structure of NS3 protease 
domain in complex with the 47 residue fragment of NS2B revealed the key 
residues involved in substrate recognition and mechanism of activation of 
NS3 [10] . For proteolytic cleavage of the poly-protein, the NS3 protease 
needs ~ 40 residue hydrophilic domain from NS2B [11]. Moreover, 
His51, Asp75 and Ser135, the active site residues form the catalytic triad 
(Figure 1) are responsible for the proteolytic activity which is the exclusive 
mechanism of action of serine protease family [12,13]. Lys74, Leu149 and 
Asn152 are located near the active site and interact with the inhibitors 
through hydrophobic contacts. Binding of the inhibitors induces 
conformational changes in the active site of NS2B/NS3pro and breaks the 
H-bond interaction between the Asp75 and Lys74. The NS2B/NS3 protease 

complex is taken as the target for the present study for development of 
anti-dengue compounds [14]. Due to endemic, rate of development of 
inhibitors of NS2B/NS3 protease has increased. Discussion on methods 
of development [15,16] of some of these inhibitors is more relevant to 
the present work. It includes the peptido-mimetics synthesized based 
on the substrate peptide [17-19] or cyclo-peptides [20]. Structure-based 
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Figure 1: Surface diagram of Den2 NS2B/NS3 protease with its 
catalytic triad
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virtual screening method was efficiently used for finding novel inhibitors 
[21-23]. Especially, the anthrecene based compounds ARDP0006 and 
ARDP0009 are structurally similar to acridone and xanthone and show 
considerable inhibitory activity in cell based replication assay at micro 
molar concentrations [22]. Similarly, library of natural products [24-26] 
extracted mainly from Boesenbergia rotunda (L.) Mansf. Kulturpfl (BRI) 
and a common spice of the ginger family (Zingiberaceae) is the source for 
flavone based compounds reported as inhibitors of NS2B/NS3 protease. 
Small molecule libraries [27] were screened to identify NS2B/NS3 specific 
inhibitors by in vitro high throughput screening (HTS) method and the 
compound BP2190 is reported as a novel and selective inhibitor [27]. 
Virtual screening and core hopping techniques together short listed 
some of the non-peptide inhibitors from ACD chemical library [28]. 
Nevertheless, only less number of inhibitors including peptide or small 
molecule inhibitors with moderate activity has been reported. Benz[d]
isothiazol-3(2H)-one derivatives made by click chemistry were proven 
as anti-viral compounds against Den2 and West Nile virus (WNV) 
[29]. Derivatives of anthracene show inhibitory activity at micro molar 
concentrations which was proven by protease inhibitor assays and 
structure activity relationship (SAR) study [22]. The RC-1 peptide inhibits 
the NS2B-NS3pro with the IC50 value of 46.1 µM at 28°C, 21.4 µM at 37°C 
and 14.1 µM at 40°C [30]. Protegrin-1 (PG-1), a 18 a.a. peptide has been 
reported as a Den2 protease inhibitor by MK2 cell line based assays. It 
also controls the viral replication in the host and it shows the toxicity at 
the concentration of 12.5 µM and above [31]. Non-substrate based NS3 
protease inhibitors were also reported using homology modeling, virtual 
screening and docking. However, there are no crystal structures available 
for the complex form of Den2, the NS2B/NS3pro complex with its inhibitors.

Boesenbergia rotunda L, contain a set of compounds including 
flavones and their corresponding chalcones was reported as good non-
competitive inhibitors of Den2 protease [24]. Flavones (pinostrobin, 
pinocembrin and alpinetin) and their chalcones (pinostrobin chalcone, 
pinocembrin chalcone and cardamonin) were found to bind at the active 
site by the rigid and automated flexible docking methods with a good 
correlation between the predicted and experimental binding affinity [32]. 
Availability of data that support antiviral activity of some of the flavones 
and their chalcones are highly helpful for analysis of structurally similar 
compounds such as acridones and xanthones. Moreover, acridones 
are proven as antiviral compounds as they inhibit replication of herpes 
simplex virus (HSV) [33] and RNA synthesis in Junin virus [34]. Most 
importantly, activity of N-substituted acridones against haemorrhagic 
fever viruses like dengue were also been reported [35]. A recently 
published work reports the potential role of acridone and their derivatives 
in inhibiting the Dengue viral replication. The inhibition is found towards 
all the four serotypes, with increased inhibition towards DENV-2. The 
mode of inhibition has been studied with a host enzyme called inosine-
monophospate dehydrogenase. This enzyme is believed to have an effect 
on viral replication by restricting the GTP synthesis [36]. The potential 
of acridone for anti-viral activity by viral protease inhibition and its 
increased efficiency by dual mode of binding is undertaken in the present 
study. On the other hand, xanthones are very specific group of biologically 
active compounds. Many of its derivatives are known to have a strong 
antiviral activity [37] and 20 different xanthones isolated from Swertia 
mussotii are known to inhibit viral replication in hepatitis B virus (HBV) 
infected cells [38]. In addition, mangosteen (Garcinia mangostana) fruit is 
one of the natural sources of many bioactive xanthones and it shows good 
antiviral and anticancer activities without adverse side effects. In general, 
both acridones and xanthones are common in terms of their inhibitory 
activity against the different types of Herpes Simplex Virus (HSV) [39]. 
Hence, the present study aims at the possibilities for inhibition of NS2B/
NS3pro complex by acridone and xanthone derivatives with reference to 
the already reported flavone based inhibitors.

Materials and Methods
Preparation of NS2B/NS3 Protease

The crystal structure of NS3 protease in complex with the fragment of 
NS2B cofactor was taken from the Protein Data Bank (PDB ID: 2FOM) 
[10]. In the structure, a loop region is missing, which has been modelled 
using PRIME available in Schrödinger. The protein was prepared by 
assigning proper bond order and formal atomic charges. Proper ionization 
and tautomeric forms were ensured and optimized the H-bond network. 
A regular protocol of “protein preparation wizard” was used to sample 
the conformations of hydroxyl and thiol groups, amide group of Asn and 
imidazole group of His. All the amino acids (especially, Asp, Ser, Glu, Arg 
and His) were protonated. Before starting the docking calculation, the 
whole structure of the NS2B/NS3 protease was optimized and minimized 
with Root Mean Square Deviation (RMSD) cut off of 0.3Å in order to 
remove steric clashes and to calculate the conformation corresponding to 
(nearest) local minima.

Preparation of ligands

Flavones (pinostrobin, pinocembrin and alpinetin) and a chalcone 
(cardamonin) are taken as standard (known inhibitors of Den2 NS2B/
NS3 protease) and their structures are depicted in figure 2. The derivatives 
of acridone and xanthone (Table 1) were drawn and optimized using 
the Chemsketch software. All these compounds were prepared for 
docking using “Ligprep” module available with Schrodinger Suite. The 
default parameters were set to generate maximum of 32 tautomers and 
stereoisomers at pH 7 ± 2. Steepest descent followed by conjugate gradient 
methods was used for energy minimisation which is available under the 
Impact module for convergence of structure, geometrically as well as 
energetically.

Figure 2: Alignment of 3D structure of flavone derivatives

Compounds Binding Site Score Energy (kcal/mol) 
Cardamonin Catalytic triad -6.19 -33.87 
Alpenetin Catalytic triad -5.34 -32.91 
Pinostrobin Catalytic triad -5.70 -29.42 
Pinocembrin Catalytic triad -6.57 -35.90 
Acridone Nearby the Catalytic triad -7.83 -53.12
Xanthone Nearby the Catalytic triad -7.92 -50.19

Table 1: Score and energy of each compound docked with NS2B/NS3 
protease
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Molecular docking
The compounds already reported based on experimental activity study 

were docked using induced fit docking (IFD) method [40]. It produced 
multiple binding poses for each ligand and ranked primarily by docking 
score and calculated glide energy. In this method, both the receptor 
and the ligand are allowed to move. Hence, the binding site can adopt 
the conformation that is suitable for the ligand and vice versa. The best 
pose for each standard ligand was chosen based on score, energy and the 
interactions. In order to find the site preference for xanthone, acridone 
and flavone, blind docking was performed using Glide [41] package. 
During the process, the grid was set to the whole protein to allow the 
ligands to find their binding pocket that is energetically favourable. Since 
the acridone and xanthone derivatives bind at the site adjacent to the 
catalytic site (aka, tunnel site), the IFD method was employed to assess the 
synergistic inhibition of Den2 protease by acridone and xanthone while 
flavones bind at catalytic site. The interactions between protein and ligand 
were analyzed using Ligplot [42] and Chimera [43] software packages. 
Optimized Potential for Liquid Simulation (OPLS-2005) [44] force field 
was used for all the above calculations. MD simulations were performed 
to confirm the stability of acridone and xanthone binding at the tunnel site 
while flavone binds at the catalytic site.

MD simulations
NS2B/NS3 protease in complex with each of the best scored inhibitors 

was simulated for 10 ns [45]. Simulation system for each protein-ligand 
complex was prepared using Leap module available with AMBER10 suite 
[46]. The established procedure was adapted to impart protonation states 
of the amino acids. For charge neutralization of the system, Na+ or Cl- 
was used. The force field parameters for acridone, xanthone and flavone 
derivatives were derived using antechamber program and GAFF (general 
amber force field) [47]. AM1-BCC charge method was used in assigning 
the atomic point charges [48]. The TIP3P [49] box (triangulated water 
molecules) with 10 Å3 box was invoked for solvation. Steepest Descent 
(SD) and Conjugate Gradient (CG) methods were employed to minimize 
the system in two phases. In the first phase, solute atoms were restrained 
by harmonic potential with force constant (kcal/mol-Å2) and the solvent 
atoms were relaxed. Then, CG method was employed to relax the whole 
system without restraining the solute atoms. In order to set the system to 
obey NPT ensemble during simulation, equilibration process was carried 
out in two phases. First, the temperature was equilibrated around 300 K 
using Berendsen temperature coupling [50], in which, 2 ps time constant 
was set to temperature coupling and the Maxwell distribution was used to 
generate random seed which was used to assign initial velocities for given 
temperature. 

The periodic boundary condition (PBC) was implemented along with 
constant volume. In the second stage, isotropic positional scaling with time 
constant (2 ps) for pressure coupling were set to equilibrate the pressure 
around 1 atm. Velocity information was taken from the end of previous 
equilibration stage. After the equilibration, the system was interpreted in 
terms of the potential, kinetic and total energy as indicators to analyse 
the finished equilibration steps. Finally, 10 ns simulation was performed 
with 2 fs integration time without solute atoms being restrained. The ff03 
[51,52] all atom force field was used in all the steps.  Both the equilibration 
and MD simulations were carried out using Particle Mesh Ewald (PME) 
method [53] to treat the long range electrostatic interactions, SHAKE 
algorithm [54] to restrain all the bonds involving hydrogen atom (to control 
fastest vibrations), 2 fs time step and 10 Å non-bonded interaction cut-off.

Binding free energy calculation
The binding free energies (ΔG°) were calculated for complex formation 

between NS2B/NS3 protease and acridone or xanthone binding at tunnel 
site. MM-GB/SA [55-57] method and MMPBSA.py [58] module were 

employed for calculations involving the last 2 ns (with 5 ps frequency) 
of 10 ns trajectory. In MM-GB/SA method, the ff03 force field was used 
to calculate the MM energy (eq.2). GB method [59] was used to calculate 
the polar solvation energy and the molsurf [60] was used to calculate the 
solvent-accessible surface area (SASA). The nMode module was used by 
MMPBSA.py program to estimate the entropic contribution (-TΔS). The 
overall calculation is described in the following equations.

( ), , , , ,bind solv bind vacuum solv complex solv ligand solv receptorG G G G G° ° ° ° °∆ = ∆ + ∆ − ∆ + ∆  (1)

bind MM solG H T S E G T S∆ = ∆ − ∆ ≈ ∆ + ∆ − ∆ 	                                 (2)

intMM ernal electrostatic vdwE E E E∆ = ∆ + ∆ + ∆ 		                 (3)

/sol PB GB SAG G G∆ = ∆ + ∆ 				                   (4)

Where, MME∆  is gas phase molecular mechanics energy; T S− ∆  
is conformational entropy; solG∆  is solvation free energy; int ernalE∆  
includes bond, angle and dihedral energies.

Results and Discussion
Molecular docking

As a result of IFD, 20 binding poses for each ligand were produced and 
the score and energy for each pose was obtained. Score of -6 ± 1 kcal/
mol was observed for all the standard compounds (cardamonin, alpentin, 
pinocembrin and pinostrobin) (Table 1). These compounds bind well at 
the catalytic site and interact with all the three residues of catalytic triad 
and other neighboring residues through hydrogen bond and hydrophobic 
interactions. Score and binding energy are in comparable range as well as 
in the range of the values already reported in the literature [32].

Further, the nucleus structure of acridone and xanthone were subjected 
for Glide docking without specifying the binding site (blind-docking). 
Table 1 and figure 3 detail the score, energy and interactions associated 
with these compounds binding at the site nearby the catalytic triad (tunnel 
site). Both the acridone and xanthone prefer the tunnel site with score 
-7.8 kcal/mol which is better than that is observed for binding of standard 
compounds at the catalytic triad. Important characteristics of binding 
at the tunnel include interaction with the Lys73 and Lys74. The role of 
these two lysine residues is very important for binding of ligands at the 
catalytic triad. Binding of acridone and xanthone at the tunnel through 
their non-bonded interactions with Lys73 may induce conformational 
change at the junction of both the sites. The tunnel site is mainly 
composed of many hydrophobic (mainly, Lys73, Lys74 and Lue76) and 
few polar (mainly, Thr120 and Asn167) amino acids. This hydrophobic 
pocket possesses more void volume even in the presence of acridone or 
xanthone as shown in surface diagram in figure 3 (right panel). In order 
to improve the binding efficiency, different derivatives of acridone and 
xanthone are modelled by substituting different functional groups rich of 
hydrophobicity. Methyl, isopropyl and tert-butyl groups were substituted 
at X1 and X6 positions which are expected to improve the hydrophobicity 
as well as shape complementarity with the tunnel site. The details of 
substitutions made in both the core structures are described in table 2. 
The 16 derivatives for xanthone and acridone, separately, are subjected for 
IFD to find the favourable substitutions with good score and energy. IFD 
results confirm that the isopropyl group substituted at both X1 and X6 
positions of both acridone and xanthone improved the binding efficiency 
(binding energies: -50.1 and -53.1 kcal/mole, respectively) with the 
interaction pattern similar to their respective core structures. Xanthone 
derivative has favourable score of -8 kcal/mol whereas it is -7.8 for the 
acridone derivative (Figure 4).

Further, docking was performed to assess the binding efficiency of each 
flavone derivative and the cardamonine at the catalytic triad in the presence 
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of acridone and xanthone at the tunnel site. The xanthone derivative binds 
to the tunnel site with more number of hydrogen bond interactions than 
that of the acridone derivatives. The xanthone derivatives interact with 
Lys73, the hydrophobic amino acid present in the junction of the tunnel 
and the catalytic sites. In addition, these derivatives interact with Val155 
and Ala166 present in the tunnel site. Apart from the hydrogen bond 

interaction, hydrophobic contacts with the other amino acids increase the 
stability of the complex. On the other hand, acridone derivatives interact 
with Leu149 and Asn152 through hydrogen bond as well as hydrophobic 
interactions.

Synergism
The above results confirm that flavones and cardamonine prefer the 

catalytic-triad region whereas the xanthone and acridone derivatives 
prefer to bind at the tunnel site. Hence, the docking was performed for all 
the standard compounds at the catalytic triad in the presence of xanthone 
and acridone at tunnel site, separately. The results will be much helpful 
to identify the different combinations of these two groups of compounds 
binding at their respective sites, hence to prove the synergistic function 
of ligands. In the first step, the xanthone was docked at the tunnel site 
and screening of the standard compounds was carried out at the active 
site. It confirmed that the flavone binds well with the best glide energy 
of about -69.9 kcal/mol . Similarly, the acridone derivative was fixed at 
the tunnel region and the screening was carried out at the triad where 
acridone derivative shows good binding energy (-53.1 kcal/mol) (Figure 
5a). In the presence of acridone at tunnel site, binding energy for flavone 
to bind the active site (catalytic triad) is -40.7 kcal/mol (Figure 5b). This 
is highly unfavourable when compared to its binding in the presence of 
xanthone (in the place of acridone) (Figure 5c). The binding free energy 
calculated (entropy term included) based on the MD simulation trajectory 
substantiates well the above docking results (Figure 6). Acridone binds 
very strongly (-24 kcal/mol) compared to the xanthone (-6 kcal/mol). 
Binding of second acridone (at catalytic triad) is not favourable (< -3kcal/
mol) whereas flavone binds well (-4 kcal/mol). Similarly, flavone shows 
more favourable binding (-7.5 kcal/mol) in the presence of xanthone at 
the tunnel site. During synergistic inhibition with flavone, acridone binds 
tunnel site with more affinity (-12.5 kcal/mol) compared to the xanthone 
(<-3 kcal/mol). Together, acridone and flavone show favourable binding 

Sl. No. X1 X2 X3 X4 X5 X6
1. H H H H H H
2. Me H H H H Me
3. iP H H H H iP
4. tBu H H H H tBu
5. H H H Me H H
6. Me H H Me H Me
7. iP H H Me H iP
8. tBu H H Me H tBu
9. H H H Me H H

10. Me H H Me H Me
11. iP H H Me H iP
12. tBu H H Me H tBu
13. H H H H H H
14. Me H H H H Me
15. iP H H H H iP
16. tBu H H H H tBu

Table 2: Derivatives made by substituting the selective functional groups in 
the different positions of core structure of acridone and xanthone
Functional groups: H-Hydrogen atom; Me- methyl; iP-isopropyl and tBu-
tert-butyl.

 
Figure 4: Binding mode of acridone (a) and xanthone (b) at the tunnel 
site of Den2 protease

Figure 3: Binding of xanthones and acridones at the tunnel site. The 
surface diagrams depict catalytic triad residues (ball and stick, left 
panel) and the tunnel site together and full view of tunnel site with the 
ligands (right panel). The same is depicted using cartoon to understand 
the binding residues from both the sites
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Figure 5: Synergistic binding mode of acridone and xanthone at tunnel site while flavone/acridone binds in catalytic site

Figure 6: Binding free energy (ΔG°=ΔH-TΔS) calculated for binding of 
acridone and xanthone at the tunnel site in the presence of flavone at 
catalytic site. In acr#(acr-acr), possibility for acridone to bind both the 
sites, where, acr1 denotes binding of acridone at the catalytic site and 
acr2 denotes binding of acridone at the tunnel site

with their preferred sites suggesting that these two compounds will 
have synergistic inhibitory activity against the proteolytic activity of 
NS2B/NS3pro.

Conclusion
Flexible docking studies confirm that the flavone and chalcone based 

inhibitors of DENV NS2B/NS3pro prefer to bind the active site with the 
catalytic triad. The acridone and xanthone based compounds are known 
to have antiviral activity and they tend to bind at the new site nearby 
the catalytic triad, called tunnel site. This provides a new insight in 
designing inhibitors for DENV based on the structure of NS2B/NS3 
protease. Also, it provides a base to propose that a synergism can exist 
in the inhibitory activity of these two site specific inhibitors. Flexible 
docking , MD simulation and binding free energy calculations confirm 
that acridone and flavone based compounds will synergistically inhibit 
DENV NS2B/NS3 protease complex and this new finding provides the 
base for further extension with biochemical and structural studies to 
confirm the same. Binding studies for the dual inhibition sites have not 
been reported so far. As a continuation of the present work, binding 
studies with anti-viral compounds from natural resources are being 
undertaken with NS2B/NS3 protease.
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