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Abstract
Osteoporosis affects half the population of people over 60 in developed countries. Various anabolic, anti-resorptive, hormone replacement 

therapies and bone grafting have been used to retain healthy bone mass and strength; however, they can produce serious adverse effects. To 
test alternative therapies to drugs, we evaluated the effect of FDA approved 3-D biodegradable poly-L-lactide acid scaffolds seeded with both 
osteoblasts and mesenchymal stromal/progenitor cells exposed to a 15 Hz, 2.4 milli Tesla pulsed electromagnetic field to promote osteogenic 
bone regeneration by stimulating osteogenesis. Once adhered, cell scaffolds were evaluated for active osteogenic bone proteins to provide 
evidence that PEMF accelerates osteoblast and MSC proliferation, differentiation, and mineralization. Evaluation of active osteogenic markers 
showed pulsed electromagnetic field increased levels of osteocalcin, osteopontin, and alkaline phosphatase in cell therapies up to 30%. An 
increase in the rate of osteogenesis was observed between 7-14 days, providing a window of efficacy for combining both pulsed electromagnetic 
field therapy with cell-seeded tissue engineered scaffolds. The combination of PEMF with bioengineered cell therapies can provide alternative 
treatments to current problems of limited tissue availability, donor site morbidity, immune rejection, and pathogen transfer due to autograft.
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Introduction
Osteoporosis is a skeletal disorder characterized by compromised 

bone strength, increasing the risk of fracture. Besides impaired quality 
of life, patients experience increased mortality rates in conjunction with 
osteoporosis [1]. Current estimates predict that in developed countries, 
half of the population over the age of 60 will suffer from osteoporosis [2], 
with 17 billion dollars being directly spent on the care of osteoporotic 
fractures in the U.S. in 2005, predicting osteoporosis-related direct 
costs would increase to 25 billion dollars by 2025 [3]. Pharmacological 
therapies such as hormone replacement therapy [HRT], and anabolic 
and antiresorptive drugs are currently being used to treat osteoporosis, 
but adverse effects of different treatments such as hormone replacement 
therapy [HRT] may induce high incidence of breast cancer, depending 
on the length of therapy and age of the patient [4]. Biophosphates for the 
treatment of osteoporosis have been reported to cause osteonecrosis of jaw 
bone structure [5], while long term use of parathyroid hormone [PTH] 
has received the US Food and Drug Administration’s “black box” warning 
regarding osteogenic sarcoma [6]. Bone allograft and autograft have also 
been used; however, pathogen transfer due to autograft [7], and immune 
rejection due to allograft [8] cause complications for these procedures.

Alternatives to treating osteoporosis without using drugs or bone 
transplantation include adult stem cells, which have been used in the clinic 
for over a decade, mainly to treat tissue injury and immune disorders. 
In particular, mesenchymal stromal/progenitor cells [MSCs - sometimes 

referred to as mesenchymal stem cells] derived from adult bone marrow, 
provide a promising stem cell poplulaton for bone repair in skeletal 
disease due to their immuno-suppressive and immune-evasive properties 
[9]; however, their consistency in regenerating bone tissue is still under 
investigation. A growing body of data indicates that stem cell function 
is critically influenced by exogenous signals from the extracellular 
microenvironment [10,11]. 

Recent advances in pulsed electromagnetic field [PEMF] therapy to 
effect osteoporosis report a decrease in the deterioration of trabecular 
and cortical bone microarchitecture [12], as well as improved bone 
mechanical properties such as maximum load, stiffness, and elastic 
modulus [13]. This effect involves a series of responses from osteoblasts 
and their progenitor cells. Another non-pharmacological therapy for 
the treatment of osteoporosis is bone tissue engineering [BTE], which 
involves inducing newly functional bone regeneration through the 
synergistic combination of biomaterials, cells and growth factors [7]. In 
this study we used MSCs seeded onto a BTE scaffold, and exposed to 
PEMF to determine how these three combined therapies could provide 
a more effective means of stimulating bone regeneration. MSCs were 
used because they easily adhere to polymers in tissue culture [14], and 
their high proliferative rates, combined with their ability to withstand 
freezing temperatures, allows for their expansion in clinically relevant 
numbers [15]. They also have a tendency to home to damaged tissue sites 
that are expressing inflammatory molecules, suggesting a higher efficacy 
of engraftment into inflamed tissues. Cultured MSCs can be stimulated 
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using differentiation media [DM] to influence tissue type [16]. The 
application of an appropriate physical stimulus such as PEMF to MSCs 
in culture has been reported to overcome challenges associated with 
standard culture systems, namely limited diffusion, non-homogeneous 
cell-matrix distribution, and reduced cell proliferation and differentiation 
[17]. The addition of 3-D biodegradable polymer scaffolds to enhance the 
formation of bone has been reported to support the accumulation of, and 
increase the dose of MSCs directly to injured tissue sites [18]. While the 
contribution to osteogenic differentiation has already been established for 
poly-L-lactic acid [PLLA] based BTEs [19] and MSCs [20], the aim of this 
study is to investigate whether PEMF can expedite the osteogenic process 
using these BTE and MSC methods to form bone.

Materials and Methods
Cell Culture

Osteoblasts: As control, ATCC [Manassas, VA] fetal osteoblasts [FOB] 
were cultured in a mixture of Ham’s F12 Medium Dulbecco’s Modified 
Eagle’s Medium and 2.5 mM L-glutamine [without phenol red]. To make 
the complete growth medium, 0.3 mg/ml G418 and 10% fetal bovine 
serum [FBS] were added to base medium. Cells were incubated at 34°C, 
with 5% CO2, per manufacturer’s instructions. Cell populations were 
grown to 80% confluency. To simulate the in situ environment, growth 
factors used to enhance osteogenic differentiation included: 20 mg/ml 
transforming growth factor-beta [TGF-β]; 20 mg/ml vascular endothelial 
growth factor [VEGF]; and 20 mg/ml bone morphogenic protein [BMP-2].

Human BM-MSCs: Mesenchymal Stem Cell Growing Media and 
supplements [MSC-GM, Lonza, Walkersville, MD] were used for 
culturing previously characterized hBM-MSCs [21]. Cells were cultured 
in T-75 flasks using 36 ml of media per flask, incubating at 37°C, with 5% 
CO2, and grown to 100% confluency before osteogenesis was induced. To 
stimulate osteogenesis, differentiation [induction] medium [DM] was used 
combining DMEM low-glucose [Invitrogen, Carlsbad, CA], 10% FBS, 100 
nM Dexamethasone [Sigma, St. Louis, MO] 10 nM β-glycerophosphate 
[Sigma], and 0.05 mm 2-phospho-L ascorbic acid [Sigma]. Media was 
changed every 3-4 days for 3 weeks by completely replacing the medium 
with fresh osteogenic induction media. 

BTE Scaffold and Cell seeding: Poly-D, L-lactide acid [PLLA] Bio 
Mesh [Biomedical Structures, Pinebluff, NC], having 83.5% porosity and 
12.1 µ mean size, was used as the scaffold base. This particular polymer 
was chosen for both its strength and flexibility, similar to natural bone [22]. 
To avoid degradation, the biomesh was kept in -80°C until ready for use. 
Mesh was cut using sterile forceps and scissors to fit 1cm2 squares into a 
silicone sandwich frame. Sterilization was performed with ethylene oxide 
[EtO]. Using a 5 ml pipette, scaffold was soaked in phosphate-buffered 
saline [PBS] and 20 mg/ml fibronectin [Thermo Fisher Sci, Waltham, 
MA], until well absorbed. The scaffold material is somewhat hydrophobic, 
so soft pressure is needed to soak it thoroughly without damaging the 
fibers. After saturation, scaffold was incubated a minimum of 1 hour, 
then PBS was aspirated off. Cell media was then pipetted into a non-tissue 
treated 150 mm plate, and cells were seeded onto scaffold at 10 × 106 cells/
cm2. Media was added up to center of silicone sandwich mold, making 
sure scaffold and frame were not floating. Cell scaffolds were divided into 
4 groups: 1] Osteoblasts with differentiation media [DM] only [FOB + 
DM]; 2] Osteoblasts with DM exposed to PEMF [FOB + DM + PEMF]; 
3] MSCs with DM only [MSC + DM]; and 4] MSCs with DM exposed to 
PEMF [MSCs + DM + PEMF].

PEMF Treatment: Cell-seeded scaffolds, in frames, were taken directly 
from incubators in plates including media, and were placed in 34°C 
[osteoblasts] or 37°C [MSCs] water bath, and exposed to a 15 Hz, 2.4 mT 
uniform PEMF generated by a Helmholtz coil (Figure 1), for 20 min, 3x/
week for 3 weeks. This time point was chosen because of its previously 

reported successful effects on the stimulation of osteogenic differentiation 
[23]. Using a previously characterized BM-MSC line [21], our aim was to 
show that PEMF can expedite the differentiation capacity of MSCs seeded 
on a FDA approved biodegradable PLLA scaffold for structure. Cell DM 
contain glycerophosphate, ascorbic acid, and dexamethasone, which have 
been used to preserve cell viability up to 90% in cells kept outside CO2 
incubators for up to 24 h [24]. Both osteoblasts and MSCs had controls 
from same cell lots kept in incubator. All PEMF treatments were given 
immediately after media change. Supernatant samples were taken at days 
0 [24 h], 7, 14, and 21. 

Morphological Assessment: Morphological assessment to detect cell 
attachment to scaffold included images taken using confocal microscopy 
[Olympus Fluo view FV 10i] to assess cell attachment by staining cell 
nucleus with Dapi [concentration of 1:1000 ratio dapi to PBS]. Cell viability 
was determined using live [green]/dead [red] calcein kit [Molecular 
Probes, Eugene, OR], per manufacturer’s instructions. All images were 
taken with a 10x objective. Scanning electron microscopy [S.E.M.] was 
used to detect bone formation and tissue matrix. All images were taken at 
day 0 [24 h], 7 days, 14 days, and 21 days.

Bone Protein Assessment: Enzyme-Linked Immunosorbent Assay 
[ELISA] kits: Osteocalcin kit [Invitrogen, Carlsbad, CA]; Osteopontin 
kit [Ray Bio Norcross, GA], and Alkaline Phosphatase kit [Ray Bio] were 
performed per manufacturer’s instructions using cell supernatant samples 
that were frozen in -80°C until ready for use. Once tested, samples were 
read on a micro titer plate at 450 nm.

Statistical Analysis: Experiments were performed for a total of four 
trials. The results are expressed as mean ± standard error of mean. One-
way ANOVA was used to determine statistical differences between the 
ELISA groups, with p < 0.05 considered significant.

Results
Bone remodeling is a highly integrated process of resorption by 

osteoclasts and formation of bone tissue by osteoblasts, which results in 
precisely balanced skeletal mass with renewal of the mineralized matrix. 
Biomineralization is the process by which hydroxyapatite is deposited in 
the extracellular matrix [ECM] [25]. Ideal parameters for regenerating 
bone would include biocompatible scaffolds that closely mimic the 
natural bone ECM, MSCs, or osteogenic cells necessary to lay down the 
bone tissue matrix. Morphogenic signals also help to direct the cells to the 
phenotypically desired type [7]. 

Figure 1: PEMF Generating Device.
MSCs are exposed to a 15 Hz, 2.4 mT uniform PEMF for 20 min/day, 
3x/week for 21 days. Field generated by a Helmholtz coil. Frequency 
detected by oscilloscope and field strength measure by Gauss meter.
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In this study, cells exposed to PEMF treatment over a 21 day period 
showed improved aggregation and attachment compared with controls. 
Both FOB vs FOB + PEMF and MSC vs MSC + PEMF show optimal 
attachment at between 7-14 days (Table 1). Live/dead assessment over a 
21-day period appears to be most viable at 7-14 days as well (Table 2). 
Scanning electron microscope [S.E.M.] used to assess bone formation 
and tissue matrix after exposure to PEMF, show more effective 
differentiation of both FOB and MSC to bone-like structure between 
7-14 days when exposed to PEMF for 20 min/day 3d/wk for 21 days, 
compared with controls (Table 3). After 21 days cells became osteoclasts 
[bone resorption], which is defined as the process by which osteoclasts break 
down bone and release the minerals, resulting in a transfer of calcium from 
bone fluid to the blood.

Table 1: Cell attachment: Cell attachment to PLLA scaffold was 
assessed using DAPI to stain cell nuclei. Images were taken at 
10x using confocal microscopy Olympus Fluoview FV 10i imaging 
system using scale bar set at 100 µm. Optimal cell aggregation and 
attachment appears between 7-14 days after cells seeding, when 
exposed to PEMF.

Table 2: Cell Viability: Cell viability was assessed using live/dead 
staining technique (live-green, dead-red) and imaged at 10x using 
confocal microscopy Olympus Fluoview FV 10i imaging system with 
scale bar set at 100 µm. Cells appear most viable between 7-14 days 
after seeding onto PLLA scaffold and exposed to PEMF.

Table 3: Cell Osteogenesis: S.E.M. images (100 - 200 µm) show 
greater osteogenetic formation of bony-like structure occurring between 
7-14 days after seeding cells onto PLLA scaffold. Green arrow shows 
collagen fibers, red arrow shows calcification and yellow arrow shows 
vesicle matrix.

Active markers of osteogenesis were assessed and compared with bone 
marrow derived osteoblasts to determine bone formation processes. 
These markers include synthesis of bone matrix and formation of dense 
mineralization. Both osteoblast and MSC scaffold samples were tested 
for Osteocalcin [OCN - a marker of formed bone tissue], Osteopontin 
[OPN - anchors bone cells to the mineralized bone surface], and alkaline 
phosphatase [ALP - makes phosphate available for calcification]. All 
appear to be increased through exposure to the PEMF in the 7-14 day 
time period (Figure 2). Highest increases in protein levels of OCN (Figure 
2a), OPN (Figure 2b), and ALP (Figure 2c) were 3-fold in the osteoblasts, 
and in 1.5 fold in MSCs after exposure to PEMF treatment were shown 
between days 7 and 14, during the 21 day study. Data (Figure 2d) shows 
mean ± SD for different bone proteins and time points. 

Discussion
Osteogenesis is a complex series of events by which bone marrow [BM] 

derived MSCs differentiate to generate new bone. Temporal and functional 
patterns of bone protein expression characterize the osteoblast maturation 
process, which can be divided into proliferation, differentiation, and 
mineralization stages. OCN, or bone Gla protein [B.G.P.], is the major 
non-collagenous protein of the bone matrix. It is synthesized in the bone 
by the osteoblasts, whereby OCN levels reflect the rate of bone formation 
[26]. OPN has been shown to improve bone toughness, suggesting its 
importance in preventing crack propagation, thereby affecting bone mass, 
structure, and matrix porosity [27]. As an active marker of osteoblasts 
and hard tissue formation, alkaline phosphatase [ALP] is crucial to the 
mineralization process [28]. In osteogenesis, success is measured by robust 
expansion of ALP, leading to mineralization of the neotissue [29,30]. 

BM-MSCs possess characteristic calcium [Ca2+] waves that are involved 
in intracellular signaling. Ca2+ oscillations have been found to play a key 
role in PEMF-induced cell differentiation to various tissue types [31].
The ability of PEMF to stimulate osteogenesis depends on the maturation 
stages of the osteoblasts where by increased expression of bone marker 
genes during differentiation and mineralization can enhance calcified 
matrix production [32,33]. The plasma membrane is often considered the 
main target for PEMF signals, and most results point to an effect on the 
rate of ion or ligand binding due to receptor sites acting as modulators of 
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signaling cascades [16]. Electrical properties such as membrane surface 
charge and potential are especially influenced by extra-low frequency 
PEMF [34]. For example PEMF can induce depolarization in the cell 
membrane followed by an increase or decrease in intracellular calcium 
[Ca2+]i [34]. As a second messenger, Ca2+ ions are involved in regulation 
at all stages of cellular growth and development, including proliferation 
and differentiation, as well as in the assembling and disassembling of 
cytoskeletal elements [34].

What emerges from the considerable advances made in understanding 
the regulation of osteoprogenitor cells by growth factors is that there is 
extensive cross-talk between the signaling pathways activated by them 
[35]. This is also applicable to the interaction of PEMF and information 
transfer. The plasma membrane represents a significant barrier between 
the extracellular environment and the interior of the cell, both in terms 
of electrical resistance and in terms of information transfer. Exposure 
to exogenous stimuli such as a PEMF has been reported to promote 
proliferation and differentiation of BM-MSCs via ion dynamics and small 
signaling molecules [16]. The plasma membrane is often considered to 
be the main target for PEMF signals due to its effect on the rate of ion or 
ligand binding acting at the receptor site to modulate signaling cascades 
[16,36,37]. Ion fluxes are closely involved in the control of differentiation 
as stem cells move and grow in specific directions to form tissues. PEMF 
has been reported to affect numerous biological functions such as gene 
expression, cell fate, and cell differentiation; however, certain ranges of 
low-frequency amplitudes induce specific effects [16,37]. One plausible 
explanation is that PEMF may interact with already existing membrane 
signal-transduction mechanisms, which possess extremely high sensitivity 
and specificity for detecting and transducing low levels of signal in the 
extracellular environment [38].

In this study known osteogenic enhancing methods of combining PLLA 
scaffolds with MSCs were used to determine if PEMF could expedite the 

differentiation of bone for the purpose of treating osteoporosis. Previous 
studies have reported beneficial uses for MSCs for bone grafts because they 
can be easily isolated from adult bone marrow and differentiated naturally 
after trauma [15]. PEMF stimulation has been used for many years in 
the treatment of bone fracture healing, with clinical benefits [16,39] and 
several studies have demonstrated its capacity to increase bone tissue 
regeneration without adverse effects [13,40-42]. What is of particular 
interest is that the therapeutic parameters are most affective in the 15 Hz, 
[0.4 mT - 3.2 mT] range [16], so the effect appears to be frequency specific. 
PEMF has for many years been considered a promising alternative to drug-
based therapies for osteoporosis by increasing bone mineral density and 
preventing bone loss [43,44]. PEMF can also be applied exogenously for a 
continuous effect post-op [45].The frequency and intensity the PEMF [15 
Hz, 2.4 mT] used in this study is consistent with previous reports for MSC 
differentiation [16] and bone growth [46]. Further research is necessary 
to determine whether other osteogenic signals are being stimulated by the 
PEMF, and also whether sufficient vascularization is being produced to 
meet the growing tissue nutrient supply. 

Conclusion
PEMF in combination with MSCs and BTE scaffolds can provide 

alternative treatments to the current problems of treating osteoporosis 
with pharmaceuticals, pathogen transfer due to autograft, and immune 
rejection due to allograft. Low-frequency PEMF has been reported to 
be effective in the enhancement of osteogenesis with no documented 
negative effects as reported in drug treatments and transplantation. Here 
we show the enhanced effect of a 15 Hz, 2.4 mT, for 20 min/day, 3x/week 
for 3 weeks. PEMF has the capability of stimulating bone growth in both 
osteoblasts and MSCs to form bone up to 30% faster that previously used 
methods. The window of efficacy for administration appears to be between 
7-14 days. In summary, these results suggest that PEMF enhances the 
commitment of MSC seeded scaffolds to form osteoblasts more efficiently 
than differentiation media alone. 
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Figure 2: Production of OCN, ALP and OPN bone proteins. Both osteoblast and MSC scaffold samples were tested for
a) OCN.
b) OPN.
c) ALP 
All protein levels detected using ELISA. Increased levels of these three bone markers are greatest between days 7 and 14.
d) OCN, OPN, and ALP levels using ELISA. 
Increased levels of these three bone markers are greatest between days 7 and 14.
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