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Introduction
Recent research in mice by Kujawa and Liberman [1] 

found acute (within 24-hour post exposure) dramatic loss 
(up to 50%) of synapses between inner hair cells (IHCs) and 
afferent auditory nerve fibers (ANFs), post noise exposure 
with permanent amplitude reduction of auditory brainstem 
response (ABR) wave I and delayed (months post exposure) 
spiral ganglion loss. However, there was only a transient 
threshold shift and no hair cell loss, which led to the term 
cochlear synaptopathy, the pathology of synaptic loss in the 
cochlea. This challenged the previous assumption that outer 
hair cells are considered most vulnerable to noise, aging 
and drugs causing acquired sensorineural hearing loss, and 
inspired a subsequent line of studies. The above finding was 
confirmed by other animal studies [2-5]. It was also found that 
the IHC-ANF synapses were most vulnerable to aging [6,7] and 
dose-level-controlled ototoxic drugs [8]. Failing to accurately 
transmit auditory information to the brain due to cochlear 
synaptopathy, especially when the damage is selective to low-
spontaneous-rate fibers due to drugs, noise exposure, and aging 
[9-11], will cause deficits in temporal and intensity coding [12], 
which will lead to common hearing loss associated symptoms, 
such as difficulty hearing in noise, tinnitus, and hyperacusis, 
etc. However, it will be hidden from standard clinical hearing 
diagnostic test (pure tone audiometry), which will show 
normal hearing sensitivity at 250-8000 Hz. Therefore, it was 
termed hidden hearing loss (HHL) by Schaette and McAlpine 
[13], and currently commonly used for this pathology. It is also 
called auditory synaptopathy [14] or cochlear neuropathy [10] 
due to the site of lesion and its neurological consequences.

HHL is common in humans, with the prevalence increasing 
with age [15], while currently it occurs at younger ages due to 
more noise exposure [16-18], and its perceptual difficulties due 
to deficits in temporal and intensity coding could be a major 
health issue [14]. Two studies that investigated the prevalence 
of HHL [15,19]) recruited 2783 (21-67 years old) and 2015 
(20-69 years old) adults, respectively. The results indicated 
that 10.4 ~ 12% subjects reported hearing difficulties among 
those with normal hearing sensitivity at 250-8000 Hz, which is 
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Abstract
Hearing loss is a common public health problem which will 

impact communication ability and hence hinge quality of life. 
Recent studies have found that instead of outer hair cells, the 
synapses between inner hair cells and auditory nerve fibers, 
especially low spontaneous rate nerve fibers, are most vulnerable 
to the effects of noise, aging, and ototoxic medication. The 
damage of synapses will cause sound-coding deficits in temporal 
and intensity processing leading to perceptual hearing difficulties, 
such as difficulty hearing in noise, tinnitus, hyperacusis, etc., 
but cannot be detected by current standard hearing diagnostic 
procedures. This pathology of synaptic loss in the cochlea 
was termed cochlear syanptopathy, more commonly called 
hidden hearing loss (HHL). This new finding inspired a line of 
studies leading to more detailed discoveries from underlying 
mechanisms to clinical applications, though they have not yet 
been widely recognized in the clinics. Currently, more people are 
struggling with HHL and it is occurring at a younger age due to 
increased recreational noise exposure. Due to a lack of awareness 
of synaptic dysfunction, no easily accessible diagnostic tools, 
and no effective treatments, people with HHL in the clinic are 
either informed of normal hearing sensitivity with no follow up 
services or referred for auditory processing disorder evaluation. 
This review provides intensive but condensed information about 
cochlear synaptopathy including etiology, diagnosis, differential 
diagnosis, and treatment, with the intention to guide professionals 
to a better understanding of this disorder, and hence leading to 
increased public awareness, early diagnosis, and prompt and 
proper intervention.
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about 2.9 ~ 6.07% of the entire participated subjects. However, 
note that the reported hearing difficulties could be due to 
not just cochlear synaptopathy, but also other pathologies 
such as reduced cochlear function due to partial damage to 
OHCs [20], OHC damage up to 20-30% would not elevate the 
hearing thresholds), and central auditory and/or non-auditory 
deficits. Another study [21] conducted in a large audiology 
clinic facility found that about 5% of patients (<60 years 
old), including both children and adults, had self-reported 
hearing difficulties but with normal hearing sensitivity. The 
prevalence could be underestimated because unlike people 
with diagnosed or with more significant hearing loss, people 
with normal hearing sensitivity would be less likely referred 
or seek treatment. People with perceptual difficulty but with 
normal hearing thresholds would usually be formally informed 
that he or she has normal hearing and be provided with some 
communication strategies for improvement, or be referred for 
auditory processing disorder evaluation, especially for children 
with reported difficulties in school, due to a lack of awareness 
of synaptic dysfunction, easily accessible diagnostic tools, and 
effective treatments.

It’s important to have a better understanding of HHL to 
increase public awareness to prevent further possible auditory 
damage, and for professionals to possess the knowledge to 
have early diagnosis of this disorder and provide proper 
intervention, hence reduce possible health issues leading to a 
better quality of life. This article reviewed up to date studies 
related to cochlear synaptopathy including etiology, diagnosis, 
differential diagnosis, and treatment, with the intention to 
provide intensive but condensed information about cochlear 
synaptopathy to guide professionals through a better 
understanding of this disorder.

Etiology
To understand cochlear synaptopathy, it is important to 

comprehend the anatomy and physiology of hair cells, synapses 
between the IHCs and ANFs, ANFs themselves, and neurons/
spiral ganglia (SG).

The organ of corti, a sensory organ of hearing in the cochlea, 
has two types of sensory hair cells: IHCs and outer hair cells 
(OHCs). The hair cells connect to ANFs through synapses, and 
each ANF has a cell called spiral ganglion [22]. The synaptic 
ribbon in IHCs is attached by synaptic vesicles containing 
neurotransmitters [23]. Normally, about 95% of the afferent 
nerve fibers, type I fiber, connect to IHCs only, and each bipolar 
SG only receives input from one IHC [24]. Also, each IHC 
has redundant synaptic innervation, about 5-30:1 ANF-IHC 
innervation ratio depending on different species [25], which leads 
to some resistance of functional deficit caused by synaptic loss.

The type I fiber can be further divided into three subgroups 
according to their spontaneous firing rate (SR). The high-SR 
fibers with low neuron thresholds have thicker axons and more 
mitochondria and are located on the pillar side of IHCs; the low-

SR fibers with the highest neuron thresholds have the thinnest 
axon and fewer mitochondria and are located on the modiolar 
side of IHCs; the mid-SR fibers are also on the modiolar side 
with characteristics between the other two fibers [26].

OHCs amplify the movement of the basilar membrane due to 
electromotility contributing to better hearing sensitivity to low-
level sounds and improved frequency selectivity [27]. The role 
of IHCs is to transduce the mechanical energy from the middle 
ear to the electrical signal transmitted through the auditory 
nervous system. When sounds reach the ears, the hydro-
mechanical energy pushes the basilar membrane upward, 
causing the stereocilia of the hair cells to move away from the 
modiolus of the cochlea, which initiates a depolarization process 
of the hair cells. In the IHCs a less negative depolarization 
potential generated by potassium influx triggers calcium influx 
from the presynaptic active zone of the synaptic ribbon, leading 
to a release of neurotransmitter (glutamate) from the synaptic 
vesicles to the synaptic cleft, which will then be picked up by 
the nerve endings and stimulates the SG to generate action 
potential/electrical impulses transferred to the brain [28]. The 
synaptic transmission has high temporal precision ensuring 
neural response phase-locked to the sound waveform [29,30]. 
Also, the combined responses from different nerve fibers or SGs 
ensure a wide dynamic range of intensity coding of acoustic 
sounds [31].

Faithfully transducing acoustic signals through the auditory 
system relies on an intact anatomy, physiology, and strong 
communication between auditory structures. Synaptic losses 
between IHCs and ANFs cause sound coding deficits in temporal 
and intensity processing, leading to different perceptual hearing 
difficulties [32]. Recently, most of the research studies have 
been focusing on acquired cochlear synaptopathy/HHL under 
the influence of noise, aging, and ototoxic medication. 

Hair cells, especially OHCs, were historically considered 
most vulnerable to noise exposure, aging, and ototoxic drugs 
and will be damaged first, and neurons die due to hair cell 
degeneration [33-35], though it was found that partial OHC 
loss (up to 20 ~ 30% loss) will not elevate hearing thresholds 
[20]. However, recent studies have different findings.

Study on mice found acute (within 24hr) IHC-ANF synaptic 
loss (50%) occurring post noise exposure (100 dB SPL octave 
band noise for 2 hours) with temporal threshold shift (20-
40 dB) and delayed (months to years post exposure) spiral 
ganglion loss, while no loss of hair cells (both OHC & IHC) 
was found with normal stereocilia bundles up to at least one 
year post exposure [1]. Another study examined mice with no 
noise exposure longitudinally from 4-week (young) to 144-
week (old). Synaptic loss was found with aging before threshold 
elevation and hair cell loss, and nerve loss was found several-
month post synaptic loss [36]. Other animal studies confirmed 
cochlear synaptopathy without loss of hair cells due to aging 
and noise exposure [3,6,10]. A study on human post-mortem 
temporal bones (age 54-89 years) using immunostaining 
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approaches also found cochlear synaptopathy with nearly intact 
hair cells [7]. In regard to the effects of ototoxic medication, a 
study by Ruan et al [8] using mice treated with different doses 
of gentamicin found that low-dose gentamicin caused more 
type I afferent nerve fiber dendrite loss than hair cell loss, and 
dendrite loss was independent from hair cell loss. The above 
findings suggest that synapses will be damaged first instead 
of hair cells due to noise exposure, aging, and ototoxic drugs. 
However, compared to rodents, larger animals may need higher 
noise levels and longer exposure duration to induce cochlear 
pathology and the pathology may not be limited to synapses. 
Valero et al [37] found that monkeys exposed to narrowband 
noise at 120 dB (one was exposed to 120) SPL for four hours 
had 12 ~ 27% synaptic loss at basal cochlea with scattered OHC 
loss and temporary threshold shift of 20 dB.

It was found that early noise exposure will exacerbate 
hearing loss with aging in humans [38] and in mice [39]. A 
longitudinal study [38] found that people with more previous 
noise exposure history had significantly more hearing threshold 
change compared to those with less noise exposure as they aged. 
However, the noise-age interaction will only happen when 
there is synaptopathy due to noise exposure. A study on mice 
found that noise exposure (100dB SPL) with even one acute 
synaptopathy exacerbated age related auditory change causing 
more synaptic loss and spiral ganglion loss, and threshold 
elevation spread to low frequency; there was no acceleration 
of the aging process in the cochlea when a transient threshold 
shift (TTS) was caused by a lower level exposure (91 dB) with 
no acute synaptopathy [40]. A 94 dB SPL was found the highest 
noise level causing TTS without causing synaptopathy on mice 
[2]. Studies found that rodents are more noise susceptible than 
humans, suggesting higher noise levels are needed to cause 
cochlear pathology for humans [41]. The noise level for rodent 
synaptopathy exceeds the safe daily exposure level for humans 
[42,43]. More studies on larger animals are needed to establish 
the highest level that will cause TTS but no synaptopathy, 
which will give more insight to human pathology due to noise 
exposure and possible combined effects of noise and age on 
hearing sensitivity.

Glutamate excitotoxicity (over production of 
neurotransmitters causing nerve ending swelling) in the IHC 
area was observed within 24 hours of noise exposure which 
initiated further neural degeneration [1]. This selective IHC-
dendrite excitotoxicicty was also reported in other studies post 
nose exposure [44,45], with aging [7], and ototoxic medication 
[46,47]. It was found that low-SR fibers were more vulnerable 
to noise exposure, aging, and drugs, and would be damaged 
foremost compared to other ANF subgroups [6,9,26,40,48]. 
This is supported by the damage observed in the modiolar 
side of the IHC and the fact that no elevation of the hearing 
threshold but permanent suprathreshold neural response 
reduction was indicated in the ABR measures. High-SR 
fibers, sensitive to low-level sounds contributing to threshold 
detection, will be saturated at the level low-SR fibers start 

responding to sounds [49]. Unlike the high-SR fibers, the low-
SR fibers are the thinnest type I subgroup, located on the IHC 
modiolar side, with fewer mitochondria, and respond to high 
level sounds, which make them more susceptible/vulnerable to 
external effects.

Low-SR fibers have high thresholds and are insensitive to 
continuous noise, which may have specific contributions to 
hearing in noise [50]. In addition, Low-SR fibers were found 
important to the olivocochlear reflex [51] and acoustic reflex 
[52], which help protect hearing from loud noises by inhibiting 
the cochlear amplifier or increasing middle ear transduction 
impedance, respectively. Noise induced damage of low-SR 
fibers affecting the reflexes may cause further damage of the 
cochlea, leading to loss of hair cells and permanent threshold 
shift [5]. Also, both reflexes have more effect on low-frequency 
than high frequency sounds, which help signal detection in 
noise [53].

This selective damage of cochlear synaptopathy causes 
inaccurate intensity representation of acoustic signals and 
degraded temporal precision which are important for coding 
suprathreshold sounds, therefore leading to clinical functional 
deficits, such as difficulty hearing in noise, hyperacusis, tinnitus, 
etc. [12,32,54-57]. Hearing in noise is a difficult listening 
situation because the noise will mask the signal. The level of 
a tone signal needs to be increased to at least the same level as 
the noise to be detected [58]. When low-SR fibers are damaged, 
the ability to code/respond to high level sounds will be affected, 
especially in noisy environments, due to the following reasons. 
First, the intensity coding dynamic range will be reduced from 
the full range of intensity coding to a soft to moderate sound 
level coding due to losing high-level sound response from the 
low-SR fibers. Second, the intact high-SR fibers ensure normal 
hearing sensitivity in quiet but they will be easily masked by 
noise. Third, the improved hearing in noise ability is affected/
diminished because the olivocochlear reflex and acoustic reflex 
are affected due to low-SR damage. Fourth, degraded temporal 
precision and intensity coding caused by synaptopathy will 
cause inaccurate timing cues and intensity cues which are 
important for hearing in noise, to be transferred to the central 
auditory system, which further deteriorates the ability to detect 
signals in noise. Therefore, people with cochlear synaptopathy/
HHL will report difficulty hearing in noisy environments but 
still have normal hearing sensitivity in quiet.

Liberman et al [54] found young adults with high-risk noise 
exposure history had significantly more self-reported avoidance 
of loud sounds (hyperacusis) than low-risk young adults. The 
results of this experiment showed that this high-risk group 
had normal hearing thresholds (at 250-8000 Hz), elevated 
high frequency thresholds, poorer high frequency distortion 
product optoacoustic emission results, reduced suprathreshold 
neural response from ANFs (reduced amplitude of ABR 
wave I), and reduced hearing in noise performance. Selective 
damage of low-SR fibers leads to a reduced dynamic range of 
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intensity coding, and affects the protective function from two 
reflexes (olivocochlear reflex and acoustic reflex) leading to 
vulnerability to loud sound exposure, which may attribute to 
hyperacusis.

Tinnitus is also one of the complaints that are considered 
associated with HHL. However, the relationship between 
tinnitus and HHL and the etiology of tinnitus remain unclear. 
Animal studies have showed that cochlear synaptopathy leads 
to tinnitus possibly due to compensatory central gain caused 
by impaired afferent neural input [13], which was further 
demonstrated by studies on human subjects.

It was found that tinnitus subjects had normal behavioral 
hearing thresholds and ABR thresholds with affected ANF 
responses (reduced ABR wave I amplitude, generated by 
combined auditory nerve activity) but unaffected central 
neural responses (normal wave V amplitude, generated by 
central neurons-lateral lemniscus) [13,59]. In addition, a study 
on military Veterans and non-Veterans with limited number 
of subjects found ABR wave I amplitude reduction had strong 
association with tinnitus but not hyperacusis [60]. However, 
some other studies did not find correlation between tinnitus 
and wave I amplitude reduction [61]. Also, a study on mice 
[62] found that cochlear neural degeneration caused by noise 
exposure was associated with enhanced startle responses 
(behavioral signs related to hyperacusis), but with limited gap 
detection deficits (associated with tinnitus). In the same study, 
the amplitude was reduced for ABR wave I but not wave V for 
mice with synaptic loss due to noise exposure. It was concluded 
that the impaired afferent neural input and compensatory 
central gain might lead to hyperacusis instead of tinnitus. 
Further studies are needed to investigate the association 
between tinnitus and HHL.

Studies have been focusing on synaptic loss as a contribution 
to HHL. Recently, it was found that transient loss of Schwann 
cells of the auditory nerve resulting in permanent loss of the 
first heminodes at the ANF is associated with HHL. This could 
be the reason causing auditory symptoms after recovering 
from acute demyelinating disorders such as Guillanin-Barre 
syndrome caused by the zika virus [63]. A study in mice showed 
that noise exposure inhibited the upregulation of Hepatocyte 
Nuclear Factor-4 alpha (HNF4α) due to aging, especially in 
the spiral ganglia. HNF4α suggestively could be important 
for spiral ganglion survival. Therefore, human disorders with 
HNF4α mutation and polymorphisms may exacerbate noise 
induced HHL [64]. Other studies found genetic mutation, such 
as mutation of OTOF and DFNA25 etc., will cause cochlear 
synaptopathy. However, the resulting hearing loss is more 
severe than HHL [14].

Diagnosis
Pure tone audiometry is the current standard hearing 

diagnostic test, measuring the lowest detectable sound level at 
octave frequencies from 250 Hz to 8000 Hz. The results recorded 

in an audiogram indicate the degree, type, and configuration of 
hearing loss, diagnosed clinically when the threshold is more 
than 20dB HL (hearing level). However, the audiogram does 
not include all information of the hearing/auditory system 
and does not always reflect the reported perceptual difficulties 
[32]. In addition, the audiogram is relatively insensitive to 
neural dysfunction; the threshold may not be elevated until 
loss of up to 80-90% of IHCs, synapses, or auditory nerves 
[65,66]. Cochlear synaptopathy with about 50% synaptic loss is 
hidden from current audiological evaluations but demonstrates 
perceptual difficulties due to deficits in temporal and intensity 
coding [55,57,67]. Currently, there is no standard diagnostic 
procedure/battery available due to issues in test reliability and 
validation. Special immunostaining or serial-section electron 
microscopy needed for synaptic analysis to validate the diagnosis 
is not practical for human study [7]. High-field diffusion MRI 
with high resolution images may provide estimation of nerve 
loss [68]. However, the extent of nerve damage may not be 
detected by MRI right after the initial lesion because neurons 
may survive without the synapse for months or years [6]. 
A combined test battery including electrophysiological and 
behavioral measures would help reduce inter- or intra- subject 
variability shown in individual tests, reduce confounding 
factors contributed by central processing, and provide possible 
links between synaptopathy and perceptual difficulties [69,70].

The click-evoked ABR, a noninvasive electrophysiology 
measure, has been proven an effective diagnostic method for 
rodent cochlear synaptopathy. The amplitude of ABR wave I, 
indicating the combined auditory nerve response, is reduced 
permanently post noise exposure and with aging, and is only 
reduced for mid-high level stimuli but not for low level sounds, 
indicating the selective damage of low-SR fibers [13]. In 
addition, the amplitude was found to correspond to the amount 
of intact synapses post noise exposure [1] and with aging [36]. 
The consistency between the synaptic count and amplitude 
reduction validates the reliability of the wave I measure for 
diagnosing HHL for animals. Studies on human subjects found 
that ABR wave I is a noninvasive method for neural response 
but may not be reliable for individual HHL diagnosis [70]. 
Wave I amplitude was reduced due to noise exposure [71], 
aging [72], and for people with tinnitus [13], but has more 
inter- and intra-subject variability and relatively low amplitude 
due to differences in gender, anatomy, and physiology [48, 
73-75]. It is suggested to ensure stable physical status across 
patients (relaxed/sleep) to reduce within- and between-subject 
variability. Some alternative diagnostic ABR measures were 
also suggested. Wave I/V ratio helps reduce within-subject 
variability, and could be a diagnostic method for cochlear 
synaptopathy. It’s found for tinnitus patients, wave I/V ratio 
was reduced due to the reduction of wave I amplitude but not 
wave V, which might be because of the central gain mechanism 
amplifying the central response (wave V amplitude not affected) 
to compensate for the reduced auditory nerve input [13]. 
Elevated Wave V/I ratio was also found in age related HHL in 
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study found reduced ABR wave I amplitude and decreased 
hearing in noise performance for a TTS post noise exposure 
[82]. It was also found that young adults with noise exposure 
history, normal threshold, and normal word recognition in 
quiet, had poorer recognition scores in noise, reverberation, 
and when speech stimuli is time-compressed [54], suggesting 
speech audiometry in difficult listening environments may assist 
the diagnosis of synaptopathy [83,84]. There are other studies 
targeting different perceptual difficulties. Elevated thresholds 
for intensity discrimination was found for tinnitus patients with 
normal hearing sensitivity but reduced ABR wave I [13,85]. 
Binaural detection thresholds were increased with increasing 
interaural time delay for listeners with hearing sensitivity above 
7.5 dB HL but no greater than 25 dB HL, suggesting perceptual 
binaural processing difficulty even with normal clinical hearing 
thresholds [86]. Modulation detection was suggested to be 
a diagnostic test targeting temporal processing deficit [87]. 
Uncomfortable level (UCL) measure might be one of the 
diagnostic method to target hyperacusis. Reduced UCL was 
found for adolescents with noise exposure history and tinnitus 
compared to the control group [88]. However, psychoacoustic 
measures would be affected by individual central processing 
[70] due to the involvement of processing from the ascending 
auditory pathway to motor response (e.g., press the button or 
say the response), which includes not just peripheral auditory 
processing but also central auditory processing. Also, the 
results will be affected by memory and attention, the higher 
level processing functions which further causes individual 
differences. To reduce variability caused by learning for 
psychoacoustic tests, it was suggested to simplify the procedure 
and provide some practice to ensure the best performance of 
each subject [89].

Extended high-frequency (EHF) audiometry including 
testing frequencies above 8000 Hz is a simple tone-detection test 
with a short test time, and could be an effective screening tool 
for early diagnosis of HHL [90]. Animal studies indicated that 
basal cochlea hair cells were affected first due to noise exposure 
[26,91]. A study on young adults with noise exposure history 
showed normal hearing sensitivity at standard test frequencies 
but higher thresholds, above 8 kHz, compared to those in the 
low-risk group [54]. Another study on adults with reduced 
speech in noise performance but normal hearing thresholds 
at 500-8000 Hz showed elevated hearing thresholds at higher 
frequencies (above 8000 Hz) compared to control group [92]. 
Ototoxic medication, such as cisplatin, was also found to affect 
the basal cochlea first [93]. Compared to conventional pure 
tone audiometry, EHF audiometry was found more sensitive 
to the detection of the initial cochlear damage due to ototoxic 
medication [94,95]. EHF audiometry was recommended to be 
used clinically to monitor ototoxicity [96]. It was found that 
EHF audiometry and distortion product optoacoustic emission 
(DPOAE) measures had the same sensitivity for detecting 
cisplatin-induced ototoxicity [97]. DPOAE is a clinical 
objective measure for the function of OHCs. OHC dysfunction 

mice [36]. However, aging may cause amplitude reduction of 
both wave I and V due to neural degeneration [72]. In 2016, 
Mehraei et al. [55] investigated the effect of noise on ABR wave 
V latency in both humans and mice. The results indicated 
that the smaller masked wave V latency shift with increasing 
masking level corresponded to less wave I amplitude growth, 
and the wave V latency shift was consistent with the degree 
of cochlear synaptopathy demonstrated by synaptic ribbon 
count in mice. That is, the smaller the masked wave V latency 
shifts the more synaptic loss. This measurement was robust 
and with less inter-subject variability, and was hence suggested 
as a possible diagnostic method for cochlear synaptopathy in 
humans. However, wave V is primarily generated by the lateral 
lemniscus in the brainstem, which might be affected by central 
processing.

The summating potential/action potential (SP/AP) ratio 
recorded from electrocochleography measure was also 
suggested as a possible method for synaptopathy diagnosis. SP 
is a resting cochlear potential, and AP is the same as the ABR 
wave I indicating combined auditory nerve response. Using 
tiptrodes in electrocochleography recording will have a stronger 
or larger AP wave than recorded in ABR. Also, the SP/AP ratio 
limited inter-subject variability in electrophysiology measures 
caused by physical issues (e.g., internal noise, head size), 
electrode resistance, etc. Animal studies have found increased 
SP/AP ratio due to decreased AP associated to synaptopathy 
caused by noise exposure, aging, and drugs [1,36,76]. Young 
adults with noise exposure history also showed increased SP/
AP, but it’s because of both increased SP and decreased AP 
[54]. Increased SP could be due to increased cochlear response 
caused by impaired acoustic reflex and olivocochlear reflex 
because of loss of low-SR fibers.

Another auditory evoked potential, frequency or envelope 
following response (FFR or EFR), will phase lock to stimuli 
(both envelope and fine structure), and was suggested to 
be a diagnostic measure for cochlear synaptopathy. FFR 
measurement montage is similar to ABR, but with more robust 
amplitude. It was found that FFR amplitude was reduced in 
post-noise-exposure mice [48], listeners with noise exposure 
but normal hearing thresholds [12,48], and tinnitus subjects 
[77]. However, FFR may be affected by physiological noises 
like ABR. FFR amplitude would decrease with aging for 
normal hearing listeners due to both peripheral and central 
contributions because of its central origin (primarily from 
inferior colliculus in mid-brain) [78-80], and would be affected 
by individual central processing. Musicians and people who 
speak tonal languages had stronger FFRs possibly due to more 
experience in stimuli [81]. Therefore, FFR cannot be used 
individually for HHL diagnosis.

Some behavioral/psychoacoustic measures could be part of 
the test battery to identify perceptual difficulties associated with 
temporal and intensity coding deficits due to selective damage 
of low-SR nerve endings of cochlear synaptopathy. An animal 
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indicated in DPOAE was found in listeners with normal 
hearing sensitivity (10-25 dB HL) [98], and OHC function was 
correlated with the pure tone audiometric results and speech in 
noise performance [99]. Therefore, including DPOAE as part 
of the diagnostic protocol for HHL would not only indicate 
OHC function but also provide valuable information regarding 
underlying etiology of perceptual difficulty such as hearing 
difficulty in noise.

A recent human study on young adults with noise exposure 
and tinnitus found that tinnitus was related to lifetime noise 
exposure but not related to reduced ABR wave I amplitude and 
EFR measures [61]. Liberman et al. [54] found that normal 
hearing young adults with reported noise exposure history 
had HHL related perceptual difficulties and performed poorer 
in HHL related diagnostic evaluation tests than those with no 
reported noise exposure history. Both studies suggested the 
importance of case history on the diagnosis of HHL.

A study using wideband chirps found that mice with noise 
induced synaptopathy had elevated acoustic reflex thresholds 
and reduced reflex response amplitude, suggesting wideband 
acoustic reflex could be a diagnostic test for HHL [100]. 
Synaptic loss due to noise exposure with selective damage of 
low-SR fibers endings would cause abnormal acoustic reflex 
responses. Wideband stimuli were specially suggested to avoid 
further damage of the cochlea because they could reduce 
thresholds by 24dB compared to probe tone. However, there is 
no wideband acoustic reflex test available to humans.

In summary, more research is needed for establishing a 
standard diagnostic test/test battery, and a comprehensive test 
battery is necessary for diagnosis of HHL to reduce within- 
and between-subject variability and serve as a cross check to 
increase diagnostic accuracy. It should include a questionnaire 
targeting noise exposure history and hearing ability in different 
listening environments, a conventional comprehensive hearing 
evaluation (otoscopy, tympanometry, pure tone audiometry, 
speech audiometry in quiet, DPOAE) to provide basic hearing 
status and differentiate HHL from hearing loss, extended high 
frequency audiometry for early detection of HHL, behavioral 
tests in difficult environments (e.g., noise, time compression, 
reverberation) targeting perceptual difficulties, and 
electrophysiology measures (e.g., ABR wave I/V ratio, wave V 
latency, SP/AP ratio) to identify the neural based site of lesion.

Differential Diagnosis
Hearing difficulties with a normal audiogram can be caused 

by different issues. The pathology of HHL caused by cochlear 
synaptopathy is in the synaptic connection between IHC 
and ANF in the peripheral auditory system. HHL can also 
be a consequence of different central issues, such as auditory 
processing disorder (APD) due to deficits in the auditory 
brainstem or cortex, cognitive deficits, attention issues, or 
problems in working memory [64]. APD refers to a group of 
perceptual processing deficits that affect the central auditory 

modality [101]. A clinical diagnostic test battery including a 
group of psychoacoustic measures had good sensitivity and 
specificity for site of lesion [102]. However, temporal processing 
deficits associated with APD could also be a result of HHL due 
to peripheral lesions [103]. Electrophysiology evaluations such 
as ABR (response from auditory nerve to brainstem neurons), 
middle latency response (mid brain to subcortical neurons), 
and late evoked auditory potentials (central neurons), may help 
differentiate the site of lesion [101]. Other studies reported 
that poor performance in APD evaluation could be caused 
by cognitive deficits [104] and linguistic disorders [105]. It 
was recommended to have psychological or neurological 
assessments before APD evaluation to rule out other central 
modality deficits associated with attention, memory, etc., which 
also provided useful information for more controlled APD 
evaluation [64]. Recent complex ABR (cABR) using speech 
signals, more sensitive to subcortical speech processing, was 
found to have strong correlation with HINT scores [106,107], 
suggesting potential to differentiate HHL from auditory to 
cognitive contributions. The auditory continuous performance 
test could be used for attention issue [108]. Also, MRI might 
help confirm site of lesion [64].

People with auditory neuropathy (AN), can have a 
normal audiogram but with poorer than expected speech 
understanding ability, especially in noise. AN is a hearing 
disorder characterized by presenting otoacoustic emissions 
(OAEs) and/or cochlear microphonic (CM) with abnormal 
or absent ABR [14,109]. Click ABR would be sufficient to 
differentiate HHL from AN. Although AN could be caused by 
cochlear synaptopathy due to genetic mutations, such as the 
mutations of OTOF and DFNA25, the resulting hearing loss 
was more severe than HHL [14].

As stated in the Diagnosis session, the SP/AP ratio recorded 
from the electrocochleography measure was suggested as a 
possible method for synaptopathy diagnosis, showing increased 
SP/AP [54]. Increased SP/AP in electrocochleography was used 
for Meniere’s disease diagnosis [110], which could also be due to 
synaptopathy because significant loss of synapses was found for 
a unilateral Meniere’s disease [111]. Meniere’s disease usually 
has characteristic symptoms including fluctuating hearing loss 
(usually starts at low frequencies), vertigo, tinnitus (low pitch), 
and aural fullness, which would be helpful for differential 
diagnosis.

Treatment
Studies have been trying to find treatments for HHL. 

Animal studies had demonstrated the effectiveness of using 
neurotrophin to treat cochlear synaptopathy. Neurotrophins, 
proteins from IHC area supporting cells, are important for 
ANF survival [112]. Genetically mediated over expression 
of neurotrophin-3 was found to help promote synaptic 
regeneration between IHCs and ANFs for mice post noise 
exposure and helped recovery of the ABR wave I amplitude 
[113]. Another study by Sly et al. [114] had similar outcomes. 
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Guinea pigs were exposed to two levels of noises (95 dB or 105 
dB SPL), which caused cochlear synaptopathy with no threshold 
elevation. Neurotrophin delivered to the round window 
immediately post noise exposure led to more synapses for both 
levels of exposure and recovery of neural function, indicated by 
recovery or improvement of ABR wave I amplitude for noise 
level at 95 dB and 105 dB SPL, respectively. The results were 
confirmed in a mice study [115]. However, similar trial has not 
been attempted using human subjects.

A study on mice delivered pharmacological inhibitor 
compound C via intraperitoneal injection for three scenarios 
(24-hour & 2-hour before, and immediately after exposure) 
and siRNA through intratympanic application to the round 
window (72-hour before noise exposure) with a result of a 
reduction of synaptic ribbon loss and OHC loss [116]. AMP-
activated protein kinase (AMPK) plays an important role in 
cellular energy homeostasis and will be increased post noise 
exposure. Both compound C and siRNA will inhibit AMPK, 
attenuating cell and neural losses, and preserve auditory 
function, suggesting a possible prevention treatment to noise 
induced hearing loss [117]. However, no similar study has been 
conducted in humans.

Recent studies have been trying to demonstrate the 
effectiveness of using auditory training to improve perceptual 
hearing difficulties. Neural plasticity has been demonstrated in 
animal studies. A group of aged rats had an almost complete 
reversal of their functional deficits and degraded cortical 
representations post intensive auditory training via an “oddball 
discrimination task” [117]. A later study on human and mice by 
Whitton, Hancock, & Polley [118] used tone-in-noise tasks and 
found that both species had improved task performance with 
intensive training. In addition, human subjects had improved 
speech perception in noise post training, and the cortical neural 
response of mice changed to better decoding of the training 
sounds leading to improved hearing in noise. Other studies 
have demonstrated improved hearing in noise post training 
of listening tasks in noise for both animal and human subjects 
[105,119]. Music training was also found to improve auditory 
function even for people with synaptopathy [120]. In addition, 
low-level sound therapy was found helpful for symptoms with 
tinnitus and hyperacusis [121,122]. All of these proposed the 
possibility of using auditory training to reduce hearing deficits. 
Focusing on deficit specific tasks was suggested for maximum 
improvement [123].

Hearing aids, a proven effective rehabilitation method for 
individuals with mild to severe hearing loss, was demonstrated 
an effective treatment option for some individuals with hearing 
difficulties, such as speech in noise and tinnitus [124,125]. 
Roup et al. [124] recruited nineteen adults with normal hearing 
sensitivity but self-reported difficulty understanding speech in 
adverse listening environments, who were fitted with binaural 
mild-gain (5-10 dB gain at 1-4 kHz for soft and moderate inputs) 
receiver-in–the-canal hearing aids for four weeks. The post 

aided results indicated significant reduction of self-perceived 
hearing difficulties and clear improvement in speech-in-noise 
performance compared to unaided condition, suggesting the 
possibility of using binaural mild-gain amplification to treat 
some individuals with hearing difficulties, especially in noise. 
In 1985, Surr et al [125] found that about half of 124 hearing 
aid new users that experienced tinnitus reported symptom 
reduction with hearing aids, indicating the effectiveness of 
using hearing aids on tinnitus. The result was further confirmed 
by Del Bo and Ambrosetti [126], who reported about 60% 
hearing aid users had minor to major reduction of tinnitus. 
Hearing aids will help amplify sounds to ease communication 
to reduce personal stress, and the amplified external sounds 
will act as a masker to reduce the internal tinnitus. Besides, 
increased auditory stimulation may help reduce the recognition 
of internal soft tinnitus. All of these help the effectiveness of 
using hearing aids on tinnitus. Currently tinnitus program 
is included in different types of hearing aids with multiple 
treatment sounds, and hearing aids have been used clinically as 
one of the treatment methods for the tinnitus.

Since most HHLs are acquired, not congenital, the prevention 
of damage is important and possible. A sound level of 85 or 
90 dB A (A-weighted SPL) is considered a safe daily exposure 
(8-hour) without causing permanent threshold shift, and 
the amount of exposure time should be reduced half with an 
additional 3 or 5 dB A level increase, according to the National 
Institute for Occupational Safety and Health (NIOSH) and 
the Occupational Safety and Health Administration (OSHA), 
respectively [42-43]. However, a study on mice found that 
exposure to lower level sounds (75 dB SPL 10-week) caused 
significant synaptopathy [64]. Lower level sound exposure 
(broadband noise at 76 dBA 8-hour, 4 kHz band noise at 65 dBA 
4-hour) also caused mild transient threshold shift for humans 
[127]. In addition, even being exposed to just one impulse noise 
or having one blast injury could damage IHC-ANF synapses 
and/or hair cells [128]. Synaptopathy would induce delayed 
neural damages causing perceptual difficulties and exacerbate 
neural degeneration caused by aging [1,36]. It is important to 
protect hearing by wearing ear protection whenever exposed 
to loud sounds, and monitor hearing sensitivity for elders and 
people administered with ototoxic medications. It is necessary 
for those working in noisy environments to monitor hearing 
sensitivity regularly for early diagnosis and prompt intervention.

Summary and Conclusion
In summary, cochlear synaptopathy is a newly discovered 

disorder with damage occurring at synapses between IHCs 
and ANFs, specifically at low-SR nerve endings, causing 
perceptual difficulties such as difficulty hearing in noise, 
tinnitus, hyperacusis, etc., although it cannot be detected by 
current standard hearing diagnostic procedures. Therefore, 
it is commonly termed HHL. Multiple reasons could cause 
cochlear synaptopathy including noise exposure, age, ototoxic 
medication, viral infection, genetic mutation, etc. Although 
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there are effective diagnostic methods for animals, currently 
no standard clinical diagnostic test battery is available 
for humans due to inter- and intra-variability and lack of 
practical validation methods. A comprehensive test battery is 
suggested to cross check and reduce the variability, including a 
comprehensive case history (targeting noise exposure history, 
HHL related perceptual difficulties, and some other possible 
causes), behavioral/psychoacoustic measures with difficult 
listening environments (targeting perceptual difficulties), 
electrophysiology measures to identify neural based site of 
lesion, an extended pure tone audiometry for early lesion 
detection, and current standard hearing evaluation procedures 
to provide basic hearing status and differentiate HHL from 
hearing loss. Differential diagnosis may include AN and 
Meniere’s disease, but more often central HHL which is 
caused by auditory modality (e.g., APD) and higher level 
cortical processing deficits (e.g., cognitive, attention, language 
deficits). Neurotrophin had been demonstrated an effective 
method to regenerate synapses and help recover neural 
function for animals. Pharmacological inhibitor compound C 
and siRNA could help prevent noise induced hearing loss for 
mice. However, no effective treatment is available for humans, 
although auditory training and hearing aids were found 
effective for improving perceptual deficits associated with HHL. 
Also, prevention is important and possible for acquired HHL. It 
is suggested to wear ear protection whenever exposed to loud 
noises to prevent damage to the auditory system, regularly 
monitor hearing sensitivity for elders, those working daily in 
noisy environments, and those who took or are taking ototoxic 
medication, for early diagnosis of hearing loss and to receive 
appropriate intervention for better quality of life.

HHL is currently becoming more common and occurring at 
younger ages due to increased recreational noise exposure, and 
its associated perceptual difficulties may cause major health 
issues. Audiologists should play a leading role in regard to the 
diagnosis, intervention, and education of HHL to increase 
public awareness, prevent potential auditory damage, and 
improve professional understanding of this disorder for early 
diagnosis. More studies are needed to investigate the prevalence 
and effective treatment of this disorder, establish diagnostic 
norms, and determine a diagnostic protocol that can be used 
universally and reliably.
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