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Introduction
Plastics manufacturing now exceeds 300 million tons 

annually [1,2]. With the projected longevity of plastic waste 
[3], there is an urgent need for a better understanding of 
the environmental and health-related effects of microplastic 
pollution. Plastic polymer manufacturing is dominated 
by six “commodity plastics” that include low-density 
polyethylene (LDPE), high-density polyethylene (HDPE), 
polypropylene (PP), polyvinyl chloride (PVC), polystyrene 
(PS), and polyethylene terephthalate (PET), [4]. Plastics in 
the environment are subject to harsh elemental conditions, 
whether through improper disposal or long-term storage in 
landfills, and can break down over time into small particulates, 
with fragments less than 5 mm in size termed microplastics 
[5]. Over the past decade, microplastics have been found to 
permeate urban and natural environments worldwide, with 
limited means of removal [6-9]. The ubiquity of microplastic 
pollution poses a major threat to marine and freshwater 
ecosystems [7,10,11]. 

It has been well documented that microplastics act as 
carriers of other chemicals due to their ability to sorb organic 
pollutants in the environment [12-14]. As a result, microplastics 
are thought to contribute to pollutant transport into marine 
organisms via inadvertent consumption, which may or may 
not exacerbate the risk of contaminant bioaccumulation and 
subsequent permeation into the human diet [15-20]. However, 
only a few studies [21,22], are known to have experimentally 
explored differences in organic contaminant sorption potential 
across the six main commodity plastics, which constitute the 
majority of manufactured plastic polymers.

Therefore, the objective of this study was to examine 
differences in equilibrium sorption of 32 organic pollutants 
(comprised of PCBs and primarily organochlorine pesticides) 
to microplastics derived from six common plastic polymers. 
Thirty of the 32 pollutants analyzed are (or have parent 
compounds that are) listed in the Stockholm Convention on 
Persistent Organic Pollutants (PoPs). PoPs under the Stockholm 
Convention include all PCBs and several organochlorine 
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Abstract
Microplastic pollution is a growing global concern across 

terrestrial, marine and freshwater environments. It is well-
documented that a number of organic contaminants are also 
associated with microplastics in the environment. In a controlled 
experiment, this study documents the equilibrium sorption 
potential of 32 persistent organic pollutants, representing 
different pesticides and polychlorinated biphenyls (PCBs), to the 
six most commonly-used plastic polymers. Results showed that 
sorption rates, measured as sorption recoveries or percent return, 
for individual contaminants varied widely. However, the plastic 
polymers polyvinyl chloride (PVC) and low-density polyethylene 
(LDPE) showed the highest average sorption recoveries for PCBs, 
while LDPE also showed the highest average sorption recoveries 
for pesticides. The lowest average sorption recoveries for both 
pesticides and PCBs were observed in the polymer polyethylene 
terephthalate (PET). Given that these contaminants have high 
persistence, toxicity and bioaccumulation potential, the results of 
this study can serve as a guide to industry, government and other 
stakeholders for prioritizing additional research or regulation 
for polymers that may pose a higher risk to aquatic ecosystems 
and human health, due to their higher contaminant sorption 
potential.
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pesticides (aldrin, chlordane, DDT, dieldrin, endrin, heptachlor, 
hexchlorobenzene, mirex, toxaphene, endosulfan) which are 
included in this study, as well as their related isomers or degradation 
products (DDD, DDE, nonachlor,heptachlor epoxide, lindane, 
BHC alpha isomer, etc). Only two of the 32 compounds 
(methoxychlor and chlorpyrifos) analyzed in this study are not 
currently included under the Stockholm Convention. However, 
both of these pesticides have been proposed as candidates for 
inclusion given their persistence and toxicity, as well as have 
been banned or restricted in several countries around the 
globe [23]. Given that these pollutants have high persistence, 
toxicity and bioaccumulation potential, the results of this study, 
along with other studies on individual contaminant sorption 
[22] or mixtures of contaminant sorption [21] to plastics and 
microplastics, can serve as a guide to industry, government and 
other stakeholders for prioritizing plastics polymers that may 
pose a higher risk to aquatic ecosystems and human health.

Materials and Methods
Samples of new, common household plastic items were 

obtained for polymers labeled 1-6 in the United States: 1- 
polyethylene terephthalate (PET), 2- high density polyethylene 
(HDPE), 3-polyvinyl chloride (PVC), 4- low density 
polyethylene (LDPE), 5-polypropylene (PP), and 6-polystyrene 
(PS). A medium-fine metal file was used to create microplastic 
particles of each plastic type ranging in size from 0.5mm to 
2 mm. Approximately 0.1 g of each microplastic sample was 
mixed with 10 mL of tap water. Over a series of different trials, 
the microplastics in water were spiked with known amounts 
(ranging from 10-15 µg) of 32 non-polar contaminants (19 
chlorinated pesticides and metabolites and 13 PCBs), as well 
as a recovery surrogate (p-terphenyl). Spiked microplastic 
samples in water were mixed in sealed jars on a rotator for 
72 hours. The microplastics were removed, and placed in 15 
mL of hexane and rotated another 72 hours in sealed jars. 
All hexane extracts were dried with NaSO4 and concentrated 
to a final volume of 0.5 ml with nitrogen gas. Final extracts 
were spiked with the internal standard tetracosane-d50, and 
analyzed for the organic contaminant recovery using a Varian 
3800 gas chromatograph in tandem with a Saturn 2200 electron 
ionization mass spectrometer. Results are reported in percent 
return, which was calculated as the difference between the 
amounts of contaminant recovered after microplastic sorption 
compared to the initial amount added to the microplastic/
water mix. For each trial, laboratory blanks (e.g. non-spiked 
microplastics) were also exposed to tap water, extracted in 
hexane and analyzed. Method detection limits and recoveries 
for all contaminants extracted from water are reported in 
Pulford et al. [25] and Polidoro et al. [26]. However, given that 
this was a pilot study, future work includes additional laboratory 
trials and replicates for these and other compounds. The list of 
32 contaminants with their average log octanol/water partition 
coefficients (Kow) are shown in Table 1 [27]. A standard ANOVA 
and paired T-tests (assuming unequal variances) were used to 
test if average logs Kow were a good predictor of contaminant 
sorption to different plastic polymers.

Results 
PVC showed the highest average sorption rates or percent 

return for PCBs, followed by LDPE and HDPE. LDPE had 
the highest average sorption rates across all pesticides (Figure 
1). Lowest average sorption rates across both pesticides and 
PCBs were observed in PET. Average percent recovery of PCB 
congeners in tap water ranged from 19% (PET) to more than 
66% (PVC) among the different plastic polymers, while average 
chlorinated pesticides percent return ranged from about 11% 
(PET) to more than 37% (LDPE).

Among individual pesticides, endrin and chlorpyrifos 
showed the highest percent returns (75% and 60% respectively) 
to PVC, and across all plastic polymers compared to other 
pesticides (Figure 2). Endrin’s high sorption potential may be 
related to its higher molecular mass relative to other pesticides, 
or potentially from the reactivity of oxygen in its chemical 
structure. Among PCB congeners, PVC consistently exhibited 
higher percent returns, ranging from about 60-75%, with the 
exception of biphenyl which showed less than 30% return 
(Figure 3). PET percent return rates were 22% or less across 

Organochlorine Pesticides Log  Kow Range* Average Log Kow

BHC alpha isomer 3.8 3.8
Endosulfan 3.83 3.8
Lindane 3.78-4.14 4.0
DDD 4.32 4.3
Methoxychlor 4.68-5.08 4.9
Chlorpyrifos 4.7-5.11 4.9
Hexachlorobenzene 4.79-5.74 5.3
Mirex 5.28 5.3
Heptachlor 5.44 5.4
Heptachlor epoxide 5.44 5.4
Endrin 5.43-5.6 5.5
cis-Nonachlor 5.54 5.5
cis-Chlordane 6.16 6.2
trans-Chlordane 6.2 6.2
trans-Nonachlor 6.08-6.44 6.3
DDT 6.36 6.4
DDE 6.51 6.5
Dieldrin 5.38-7.67 6.5
Aldrin 5.68-7.4 6.5
Polychlorinated Biphenyls (PCBs)  
Biphenyl 3.88-4.04 4.0
3.5-Dichlorobiphenyl 4.11-5.41 4.8
2.4.6-Trichlorobiphenyl 5.47-5.69 5.6
2.2'.5.5'-Tetrachlorobiphenyl 5.11-6.20 5.7
2.2'.4.5'-Tetrachlorobiphenyl 5.81-6.34 6.1
2.3'.4.5'-Tetrachlorobiphenyl 6.34-6.41 6.4
2.3.5.6-Tetrachlorobiphenyl 6.43 6.4
3.3'.4.4'-Tetrachlorobiphenyl 6.72 6.7
2.2'4.5.5'-Pentachlorobiphenyl 6.80-6.98 6.9
2.3.4.4'.5-Pentachlorobiphenyl 6.98-7.12 7.1
2.3'.4.4'.5-Pentachlorobiphenyl 6.98-7.12 7.1
2.3.3'.4.4'.5'-Hexachlorobiphenyl 7.62-7.44 7.5
2.2'.4.4'.5.5'-Hexachlorobiphenyl 7.62-7.75 7.7

Table 1: List of 19 primarily organochlorine pesticides and 13 PCBs 
added to different plastic polymers, in order of increasing average log 
Kow. (*primarily from Schwarzenbach et al. [27])
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Figure 1: Average percent return of pesticides and PCBs sorbed to six microplastic polymers

Figure 2: Percent return of 19 pesticides and metabolites across six microplastic polymers

Figure 3: Percent return of 13 PCB congeners across six microplastic polymers
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all PCB congeners. Field studies in the marine environment 
have also observed lower concentrations of PCBs sorbed to 
PET in relation to other plastic polymers, but in contrast, have 
also observed relatively low concentrations of PCBs sorbed to 
PVC [28]. With the exception of biphenyl, 3,5dichlorobiphenyl, 
and 2,4,6-trichlorobiphenyl there was no significant observable 
difference among percent returns across different PCB 
congeners to the same plastic polymer (Figure 3). 

Based on analyses of variance (ANOVA) for all contaminant 
sorption rates across all plastic polymer types, log Kow was a 
significant predictor of sorption to plastics, both within each 
class of compounds and across all polymer types (p<0.05). This 
correlation between log Kow and organic contaminant sorption 
to microplastics in seawater has also been found in other studies 
[22]. However, the rate of sorption may vary widely, even as 
compounds with high log Kow values likely sorb onto organic 
polymers more rapidly due to increased hydrophobicity [29].

Discussion
In our experiment, average sorption or percent return across 

all combined PCBs and pesticides decreased in the order 
of LDPE>PVC>HDPE ≥ PP ≥ PS>PET. With the exception 
of PVC, these results are similar to experimentally derived 
plastic-water partition coefficients summarized by other 
studies [30,31] for a variety of PCBs and other chemicals, e.g. 
LDPE ≈ HDPE ≥ PP>PVC ≈ PS. In field studies conducted in 
marine waters, higher concentrations of PCBs and PAHs were 
also found in LDPE, HDPE and PP, compared to PVC and PET 
[28]. Compared to these other similar studies, the increased 
sorption of contaminants to PVC in our study may have been 
due to potentially increased surface area during microplastics 
preparation (e.g. filing), and/or decreased crystallinity due to 
lack of weathering.

Contaminant sorption to different plastic polymers has 
been shown to vary based on both chemical and physical 
properties, including hydrophobicity [32,33], surface area 
[34], size [12,13], diffusivity [33,35], and crystallinity [33]. 
Glassy plastic polymers, such as PET and PVC, have less 
diffusion and reduced sorption capacities compared to non-
glassy or rubbery polymers, such as HDPE, LDPE and PP 
[36]. The relative higher diffusivity of LDPE may account for 
its popularity for use as environmental equilibrium or passive 
samplers for the adsorption and detection of a wide variety of 
organic contaminants [37,35]. Similarly, Huffer and Hofmann 
[38] found that linear isothermic sorption of selected PAHs to 
polyethelene (PE) was likely due to absorption into the bulk 
polymer, while non-linear isothermic sorption by PS and PVC 
may be due to surface adsorption.

In our study, microplastics were derived from new plastic 
products filed to the same size and shape. However, the size, 
age, wear and tear, and degradation of microplastics in the 
environment influence sorption rates across different polymers 
[39]. In general, sorption rates increase with decreasing 

particle size [40]. Polymer photodegradation has been shown 
to increase sorption capacity, through increased surface area 
[28,41]. Similarly, diffusion has been shown to be slower into 
virgin plastic materials, compared to eroded plastic that shows 
increased crystallinity [35].

Contaminant exposure time to microplastics is also important 
for maximizing plastic polymer sorption recoveries. In the 
laboratory, sorption of chemicals to plastics has been shown to 
come to equilibrium in less than 72 hours [34]. However, other 
laboratory studies of polyethene and polypropylene showed 
that equilibrium for phenanthrene ranged from 20 to more than 
80 days [35]. Under field conditions, a variety of environmental 
factors, including biofouling, can influence contaminant 
equilibrium conditions, sorption and degradation. In the field, 
equilibrium may occur much slower, from months to more 
than 1 year [14,28].

Eighteen of the 19 pesticides tested are organochlorine 
pesticides (or are their degradation products or different 
isomers). Chlorpyrifos is classified as an organophosphate 
pesticide, but given its polarity and chlorination, chlorpyrifos 
environmental behavior and equilibrium partition 
characteristics are closer to those of organochlorine compounds 
[42]. Chlorinated pesticides were more commonly used before 
the 1970s, but are persistent in the environment and continue 
to pose potential environmental and health risks [43-46]. 
Chlorinated pesticides are characteristically highly chlorinated 
cyclic hydrocarbons that have distinctive properties, including 
insolubility in water, persistence in soil, and bioaccumulation in 
the adipose tissue of organisms [47]. Several of the chlorinated 
pesticides belonging to the cyclodienes subgroup, including 
aldrin, dieldrin, heptachlor epoxide, and chlordane, which 
demonstrated very similar patterns of sorption across the six 
plastic types, likely due to their similar cylcodiene structure.

PCBs are synthetic organic compounds comprised of 
two conjugated cyclohexane rings with a varying number 
of attached chlorine atoms. With 209 distinct congeners, the 
number of chlorine atoms and their placement within the 
biphenyl ring system primary determines each congener’s 
physical and chemical properties. As a class, PBCs exhibit 
low vapor pressures, low water solubility, and high dielectric 
constants [48]. As the degree of chlorination and subsequent 
molecular weight increases, the sorption of different PCBs 
show a slight increase (Figure 3), indicating that the number 
of chlorine atoms may influence PCB sorption as well as the 
positioning of chlorine atoms on the biphenyl rings, especially 
as PCBs that are congruent in composition but different in 
structure rendered very similar percent return. Although the 
effects of varying chlorine position on sorption are not yet 
clear, trends may be generalized by comparing sorption rates 
among PCB isomers [49], and it is likely that the configurations 
and bulkiness of individual PCB congeners would affect the 
sorption of different PCBs onto polymers [50].
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Conclusion
Our study found that PCB adsorption to microplastics 

was higher than that of organochlorine pesticides, given an 
exposure time of 72 hours in under controlled freshwater 
conditions. In general, average sorption or percent return across 
all combined PCB and organochlorine pesticides decreased in 
the order of LDPE>PVC>HDPE ≥ PP ≥ PS> PET. Additionally, 
contaminant log Kow may be a useful predictor for plastic 
sorption rates. However, differences in organic contaminant 
sorption rates to plastic polymers outside of laboratory 
conditions can vary widely based on a number of different 
environmental factors, including plastic surface area, plastic 
weathering rates, contaminant exposure time, contaminant 
degradation conditions, contaminant mixtures, and biofouling. 
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