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However, despite more than 80 years of intensive research, it remains 
to be determined how this angiopathy and widened PP develop. The 
lack of highly sophisticated in-vivo, non-invasive biophysical and 
biochemical techniques which are needed to diagnose, early, the 
microvascular structural and hemorheological alterations in the heart 
and brain, unfortunately, has often missed the potential underlying 
changes which can lead to cardiac failure and/or stroke in people over 
60 years of age. About seven in 10 people over 65 with diabetes will die 
of heart disease and one in six from a stroke.
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Abstract 

Despite more than 80 years of intensive and outstanding research, it remains to be determined how Type 2 (non-insulin dependent) Diabetes (T2D) 
results in extensive angiopathy and elevated Pulse Pressure (PP) in patients over 60 years of age, with large risks for heart attack or stroke. We present 
below a summary of recent findings from our laboratories which may give us clues to a better understanding of these very dangerous pathologies. 
Our studies present cogent reasons for why T2D is a multivariate syndrome with numerous pitfalls. T2D appears to be due, in origin, to numerous 
pathological pathways working in concert which lead to elevated PP (in the elderly), heart failure and/or stroke. Our observations on isolated 
animal tissues and cells as well as T2D subjects support a major role for Mg deficiency as a prime trigger leading to the production and release of 
ceramides (and possibly other sphingolipids), certain phospholipids (i.e., PKC isozymes), membrane peroxidation, activation of NADPH oxidase, 
Platelet-Activating Factor (PAF), reactive oxygen and nitrogen species, and release/generation of cytokines and adhesion molecules, all of which can 
be ameliorated by increased dietary intake and supplemental Mg. Based on extensive biochemical and biophysical-molecular assays, performed 
in our labs (reviewed herein), we are convinced that long-term Mg deficiency produces genotoxic effects which cause epigenetic alterations (e.g., 
angiogenetic/atherogenic) in cell phenotypes resulting in micro- and microvascular changes in T2D patients.

Keywords: Pulse pressure; Diabetes; Heart failure; Mg deficiency; Ceramides; Platelet-activating factor

Introduction
Ever since diabetic angiopathy, characterized by abnormal 

angiogenesis, was identified as a clinical entity, approximately 80 
years ago, a growing awareness seems to indicate that this major 
complication of both type 1 (T1D) and type 2 (T2D) diabetes must be 
caused by either morphologic changes in the microvasculature, or by 
a primary functional metabolic disturbance(s) which is followed by 
structural vascular lesions. In addition, as T2D patients age (i.e., >60), 
their Pulse Pressure (PP) widens significantly (e.g., see Table 1) [1,2]. 
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Despite lifestyle modification, weight reduction 
and medication, T2D diabetes leads to high risk for 
cardiomyopathy and hemorrhagic stroke

Although the clinician often diagnoses T2D on the basis of 
elevated serum glucose and HbA1c in the elderly, other factors must 
be excluded such as pancreatic disease, injury or rare syndromic or 
genetic forms of diabetes. To these factors, the clinician usually adds 
age, family history, ethnicity, mental health, medications, biochemical 
profile, lifestyle and body weight, often making a T2D diagnosis 
problematical. Early diagnosis of T2D will often prevent the sequelae 
of events leading to uncontrolled T2D. However, in people over 60 
years of age this often becomes difficult and can result in early cardiac 
failure and/or hemorrhagic stroke; the greater the duration of T2D, 
the higher the risk for intracerebral hemorrhage [3]. Poor control of 
HbA1c appears to be a cardinal sign for T2D-induced intracerebral 
hemorrhage [4,5]. But, why are many of these patients obese and have 
underlying kidney diseases is not clear? What is the connection to 
T2D?

For the approximately 450 million people living with diabetes, 
about 90% suffer from T2D. These patients present with beta-cell 
failure and resistance to insulin. Although diet is believed to play an 
important (maybe critical) role in early development of T2D, it is not 
clear as to why [6].

Diabetics exhibit low cellular levels of ionized Mg coupled to 
elevated levels of calcium

Over the past several years, a number of epidemiological/met-
analyses studies have appeared, in the literature, to indicate that 
dietary magnesium intake is inversely associated with the incidence 
of T2D around the globe [3,7-10].

Approximately 40 years ago, two of us suggested that alterations 
in the calcium and magnesium contents (and their membrane 
transport mechanisms) could be major factors in development 
of diabetic angiopathy which lead to cardiac failure [11-13]. 
More recently, our laboratories helped to develop new Mg2+ ion 
selective electrodes which can rapidly, and accurately, measure 
the biologically-active Mg2+ as well as Ca2+ in whole blood, serum, 
plasma and cerebral spinal fluid in less than two minutes [14-19]. 
Using this new tool coupled with 31P-Nuclear Magnetic Resonance 
Spectroscopy (31P-NMRS) we have been able to accurately 
measure free Mg2+ levels in whole blood, serum, plasma and CSF, 
as well as cellular levels of free Mg2+ and Ca2+ in both T1D and 
T2D patients as well as in women with gestational diabetes [19-34]. 
Our results clearly demonstrate that both T1D and T2D diabetic 
patients exhibit significant deficits in cellular, cardiac and brain 

Mg2+; the longer the patient had either T1D or T2D diabetes, and 
the older the subject, the lower was the serum, cellular, cardiac, 
and brain Mg2+ ([19-34], unpublished findings). These alterations 
were inversely proportional to the elevation in free Ca2+ levels 
in the cells and tissues. Interestingly, we also noted that racial 
factors were observed; i.e., the deficits in Mg2+ and elevations in 
Ca2+ were significantly (P<0.01) greater in the black compared to 
white population matched for age and sex [31]. To us, this is not 
surprising, as the black population is known to have greater genetic 
risks for heart attacks, diabetic-induced nephropathy and strokes, 
particularly in the T2D diabetic population. But, why should low 
Mg2+ in both tissues and cells coupled to elevated levels of Ca2+ 
provoke microvascular angiopathy and high-risk for cardiac failure, 
renal failure and strokes in T2D diabetics?

Low cellular levels of Mg2+ coupled to elevated cellular 
levels of Ca2+ results in central and peripheral vasoconstriction 
and vasospasm of most all types of microvessels, arteries and veins 
leading to decreased microvascular blood flows, coronary arterial 
ischemia and hypertension

Approximately 50 years ago, two of us found that lowering the 
extracellular level of Mg2+ surrounding both large and small blood 
vessels from the periphery, kidneys, heart and brain (from a variety 
of mammals (including humans) resulted in intense vasospasm; the 
lower the external Mg2+ level, the greater the degree of vasospasm 
[21-23,35-57]. Careful measurement of the blood vessel Ca2+, as 
predicted by us, revealed increased cellular levels of Ca2+ [21,26,30,35-
37,41,42,44,45,48,50,52,55,56,58-61]. Using intact rats and dogs, and 
studying the intact microcirculation with TV quantitative microscopy 
(at magnifications >6,000x), we found identical results to match the 
findings we obtained on the isolated blood vessels ([21,37,41,42,55-57], 
unpublished findings). Collectively, such results would explain how, 
over a period of years, as the microvascular vessels became exposed to 
low dietary intake of Mg and continual T2D-induced depletion of Mg, 
along with elevated intracellular Ca2+, this would, most likely, result 
in stiffening of blood vessels, hypertension, and ischemia in coronary, 
renal blood vessels and cerebral blood vessels, as well as a widening 
of PP, thus resulting in Ischemic Heart Disease (IHD), cardiac failure, 
renal failure and/or stroke. Our laboratories were the first to report 
that dietary Mg deficiency in experimental animals, under carefully 
controlled conditions, would lead to elevations in both systolic and 
diastolic blood pressure [21,22,47]. Several years after our latter 
publication, others confirmed several of our findings [62,63]. There 
is now an overwhelming amount of clinical evidence to show that 
hypomagnesemia is, indeed, linked to heart disease, IHD, diabetic-
linked heart disease (and stroke) and sudden-cardiac death in infants 
, children and young adults (see [1-3,7,12,13,15,27,28,30,40,54-57,64-
73], among many other studies).

Low extracellular levels of Mg2+ lead to synthesis and release 
of sphingolipids and phospholipids in vascular smooth 
muscle cells and cardiac myocytes

In the early 1990’s, working with 31P-NMRS and Proton-NMRS 
(1H-NMRS), and isolated vascular smooth muscle cells, we noted 
that low [Mg2+]0 induced formation of a variety of sphingolipids and 
phospholipids [74,75]. We found that several of the sphingolipids, 
particularly ceramides, exert potent contractile effects on arterial 
and arteriolar blood vessels, including those in the heart, brain and 
periphery [76-78]. In addition, in the rat brain, using direct in-vivo 
quantitative video microscopy (at magnifications > 6,000x), we found 
that several of the ceramides induced potent venular vasoconstriction 

Age (years) Systolic BP Diastolic BP RBC Mg2+

25-38 118 ± 14 82 ± 8 252 ± 18

51-65 128 ± 12 76 ± 8 228 ± 10

66-76 134 ± 10 69 ± 9 206 ± 12

77-86 138 ± 8 65+/10 198 ± 8

Table 1: Progressive widening of pulse pressure and reduction in RBC 
Mg2+ with age in T2D subjects.

All values are means ± S.E.M. All values within a group are different from 
one another (P<0.05, ANOVA). All subjects were white males. RBC Mg2+ 
was measured using 31P-NMRS. N=18-52/group.
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followed by adhesion (sticking) of leukocytes, macrophages and 
monocytes to the postcapillary venular walls leading to petechial 
hemorrhages and transudation of blood- formed elements into the 
brain perivascular tissues, similar to a hemorrhagic stroke [76,78].

These observations became quite intriguing to us and we, therefore, 
pursued them and noted that low Mg2+ induced/stimulated a variety 
of cellular signaling pathways, including up-regulation of diverse 
PKC isozymes and other phospholipids (e.g., DAG) [79,80] which 
we believe underlie many reasons for why and how T2D diabetes 
can result in high blood pressure, inflammations, ischemia, elevated 
PP, cardiac failure, renal failure and/or stroke. Several years after our 
Mg-sphingolipid studies were published, other investigators reported 
indications that synthesis/releases of diverse sphingolipids may be 
instrumental in the origin of T2D [81-84].

Low Mg2+ induces formation and release of ceramides and 
Platelet-Activating Factor (PAF) in vascular muscle cells: 
Potential relationship to diabetic angiopathy, cardiac failure 
and strokes

Mg2+ is a co-factor for more than 500 enzymes in the body. 
All energy-generating pathways as well as most carbohydrate, 
lipid, nucleotide, and protein synthetic pathways require Mg2+ 

[85]. Membrane transport of cations require Mg2+ [20,48,85]. 
Examination of vascular and cardiac muscle exposed to low Mg2+ 

revealed, to us, for the first time that all enzymes involved in the 
synthesis and release of ceramides, surprisingly, were up-regulated 
both in in-vitro and in-vivo [78,79,86-90]. These Mg-deficient 
environments also resulted in increased levels of sphingosine, 
sphingosine-1-phosphate, Diacylglycerol (DAG), and diverse PKC 
isozymes [54,55,57,78,79,91].

Our labs, using intact animals and isolated blood vessels 
reported that, depending upon vessel type, and vascular tone, the 
sphingolipids resulted in contraction (and reduced blood flows) 
or sometimes vasodilation [57,75-78,91-94]. Collectively, these 
studies showed that coronary, renal and cerebral blood vessels 
underwent contraction and reduced blood flows when stimulated 
with a variety of ceramides. In addition, we found that a number 
of the ceramides and other sphingolipids resulted in increased 
membrane transport of Mg2+, increased membrane permeability, 
and inflammatory responses in cerebral, intestinal and skeletal 
muscle microvascular beds ([78,95], unpublished findings). When 
all these physiological actions of the ceramides, sphingolipids and 
phospholipids are taken into consideration, one must conclude 
that low dietary Mg intake and/or errors in Mg metabolism could 
underlie the observed detrimental cardiac, renal and cerebral 
effects of T2D.

 However, on closer examination of our early 31P-NMRS and 
proton-NMRS data, we noted a synthesis and release of PAF and PAF-
related lipids when vascular smooth muscle cells were exposed to low 
Mg2+ [71,74,75,78]. Further examination of responses of intact and 
isolated blood vessels revealed that these PAF molecules produced 
different degrees of contraction and increased permeability in the 
intestinal, skeletal muscle, and cerebral microvasculatures ([71,78], 
unpublished findings).

In 1992, Nathan and colleagues reported that bloods of T1D 
patients exhibited elevated levels of PAF [95]. Subsequently, other 
workers have reported similar findings [96]. Examination of the 
sera of several of our elderly T2D patients also revealed increased 
levels of both ceramides and PAF; the greater the duration of the 

T2D, the higher the measured serum levels of both ceramides and 
PAF (P<0.01) [97]. The higher the serum levels of ceramides and 
PAF, the lower the serum levels of ionized Mg in our T2D patients 
(P<0.01) [97]. Given our findings, we must conclude that low Mg2+ 
levels in the T2D patients must perforce lead to synthesis and 
release of ceramides, DAG and PAF molecules.

Experiments done in our labs have confirmed that rat vascular 
smooth muscle and cardiac muscle exposed to low Mg lead to 
synthesis and release of ceramides, DAG, diverse PKC isozymes, 
and PAF [54,55,57,71-76,78,79]. Whether human-type 2 diabetic 
vascular smooth muscle and cardiac myocytes produce ceramides, 
DAG, PKC isozymes and PAF when exposed to low Mg in culture 
remains to be tested.

But are the synthesis and release of ceramides, the other 
phospholipids and PAF-related molecules totally responsible for the 
fibroses and angiogenic alterations observed in T2D patients or are 
they working in concert with cytokines like transforming growth 
factor-beta (TGF-beta)? It has been suggested that TGF-beta and 
adhesion molecules play important roles in T2D-induced nephropathy 
via inflammatory and fibrotic responses [98-101].

Low Mg2+ levels are associated with elevated levels of TGF-
beta and other cytokines in vascular and cardiac muscle and 
sera of T2D subjects

Over the past several years, working with intact animals exposed 
to dietary deficiency of Mg (21 days) and isolated vascular smooth 
muscle cell, in primary cell cultures, exposed to low levels of 
Mg2+, we found, as predicted, that low levels of Mg2+ resulted in a 
synthesis and release of TGF-beta, IL-2, IL-6, TNF-alpha and the 
adhesion molecule VCAM-1 ([21,55,57,78,79,88], unpublished 
findings). Examination of the sera of several T2D patients, over 
60 years of age, indicated that all these patients exhibited elevated 
levels of these cytokines and VCAM-1 [102]. Having this data, in 
view of the above sphingolipid and PAF findings, we are tempted to 
believe this presents a strong basis for how and why T2D patients 
over 60 years of age exhibit considerable inflammatory responses, 
elevated PP, hypertension, cardiomyopathy, renal diseases and a 
risk for intracerebral hemorrhagic stroke. However, how does one 
account for T2D patients over 60 years old presenting with accelerated 
atherogenesis?

Low serum Mg2+ levels in T2D subjects are associated with 
elevated levels of cholesterol, triglycerides and LDL in both 
animal and clinical studies: Relationship to atherogenesis 
and platelet aggregation

Approximately 30 years ago, two of us reported that dietary 
deficiency of Mg in rabbits coupled with elevated dietary levels of 
cholesterol induced very pronounced arterial plaques invested with 
elevated levels of cytokines, macrophagesand monocytes ([103], 
unpublished findings). Sera from these atherosclerotic animals 
demonstrated low levels of ionized Mg coupled to elevated levels of 
cholesterol, triglycerides and LDL, very similar to what has been found 
in many elderly T2D patients [104] as well as in our hospitals (e.g., see 
Table 2). More than 30 years ago, several workers reported increased 
platelet aggregation in the sera of T2D subjects [105,106]. We have 
found that the higher the degree of platelet aggregation, the higher the 
serum levels of both PAF and ceramides and the lower the serum level 
of ionized Mg in elderly TD2 patients [102]. All of these physiological 
alterations would produce atherogenesis.
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Roles of Mg in membrane peroxidation and generation of 
reactive oxygen and nitrogen species in T2D: Relation to 
angiogenesis and cell death

In the late 1980’s, our laboratories noted that dietary deficiency of 
Mg2+, both in-situ and on isolated cardiovascular tissues and cells, as 
well as sera, resulted in membrane peroxidation of diverse cardiac 
and vascular muscle tissues, and generation of a number of ROS 
and Reactive Nitrogen Species (RNS) [54,55,57,71,74,107-110]. Very 
recently, we found that dietary deficiency of Mg (21 days) in rats 
resulted in an up-regulation of NADPH oxidase in all cardiovascular 
tissues and cells examined (i.e., 4-7-fold) ([78], unpublished findings). 
Activation of NADPH oxidase is known to produce superoxide 
radicals which lead to hydrogen peroxide (H2O2), hydroxyl radicals 
(.OH) and peroxynitrite radicals (ONOO-) (for review, see [111]).

It has been reported that oxidative stress in T2D patients 
is also associated with elevated serum and leukocyte levels of 
myeloperoxidase (MPO) [111-114]. Using some of our elderly T2D 
subjects, we have found a strong inverse relationship between RBC 
Mg2+ and MPO content (P<0.01) (unpublished findings). MPO is 
one of the most aggressive oxidants of ROS which usually results in 
elevated serum levels of hypochlorite (OCl-) which are found in T2D 
patients [112-118]. We have reported that OCl-, just like the other 
ROS, can promote constriction of blood vessels [119-124]. Studying 
the intact microcirculation and isolated vascular smooth muscle cells, 
we noted that every single ROS found in T2D patients (i.e.,.OH,H2O2, 
OCl-) or RNS (ONOO-) investigated, would promote constriction/
contraction of cerebral and peripheral blood vessels and increased 
vascular reactivity [78,123-124]. Many other investigators have 
reported similar pharmacological actions [e.g., 125,126]. Such actions 
clearly must perforce result in tissue ischemia, leading to hypoxic areas 
of no or little capillary/nutritional blood flow, stiffening of blood vessel 
walls, elevated PP and diverse inflammatory lesions.

In addition, as others have reported [116-118], we found progressive 
peroxidation in the T2D subjects, as exemplified by elevated serum 
levels of Malondialdehyde (MDA) (e.g., Table 3). Interestingly, but 
not surprising, as the MDA levels rose with age, the levels of two 
major anti-oxidants, Superoxide Dismutase (SOD) and Glutathione 
(GSH), declined with age (Table 3). The concentrations of the latter 
two moieties clearly parallel the RBC Mg2+, while the concentrations 
of MDA is inversely proportional to the RBC Mg2+ of the aged T2D 
subjects (Compare Table 1 with Table 3).

Lipid peroxidation by-product 4-Hydroxy-2-Nonenal (4-
HNE) found in sera of T2D patients and in vascular muscle 
cells exposed to low Mg

Approximately five years ago, our laboratories reported that when 
aortic, cerebral and neonatal piglet coronary vascular smooth muscle 
cells were exposed to low concentrations of [Mg2+]0, in primary 

cultures, the cells generated 4-HNE [71]. 4-HNE, a major aldehyde 
product of lipid peroxidation in membranes, is known to exert 
numerous cytotoxic, genotoxic, biological and signaling actions 
[71,127-132]. 4-HNE is a forerunner of hydrogen peroxide production 
[130-132]. As little as 1.0 uM of 4-HNE can produce chromosomal 
abnormalities and result in DNA fragmentation. Thus, low dietary Mg 
intake, over a period of years, could be expected to produce increased 
cellular and blood levels of 4-HNE, in T2D subjects over 60 years of 
age, as our investigation has now found (e.g., see Table 4). These new 
findings could be very important to the evolvement of the progressive 
microvascular structural-wall alterations, reduced nutritive-capillary 
blood flow, atherogenic, and inflammatory conditions observed in 
T2D patients. At about the time, we initiated our studies on 4-HNE, 
others reported evidence for 4-HNE induction of insulin-resistance 
in T2D subjects [133] and elevated 4-HNE adducts in sera of T2D 
patients with chronic periodontitis [134].

Interestingly, it has been reported that DNA damage and the 
DNA-damage response has been identified in human atherosclerosis 
[135,136]. As we demonstrated approximately 30 years ago, in a rabbit 
model, suboptimal dietary intake of Mg (similar to that which 65-75% 
of the North Americans ingest daily) results in rapid atherosclerosis 
with plaques over more than 60% of the aortic and coronary arterial 
surfaces [103]. Recent human studies, using serial angiography 
coupled with postmortem studies, suggest that many plaques appear 
to invade coronary arterial walls before myocardial infarctions and in 
the absence of blood clots [136,137]. As indicated above, our earlier 
previous studies indicated that low [Mg2+]0 environments lead to 
coronary arterial vasospasm and ischemia prior to plaque formation 
[13,23,30,54,55,57,71,78,138]. Depending upon the diverse types of 
DNA-modifications, cells in T2D patients (i.e., vascular, cardiac and 
endothelial cells) would exact different repair processes in-situ in order 
to attempt to remove such damage. Thus, it would be important to 
keep in mind that both DNA damage and synthesis could be expected 
in diverse tissues, in vivo, depending upon time and circulating/
cellular levels of free ionized Mg. Using this hypothesis, we have 
recently posited how hypomagnesemia may underlie an “epigenetic” 
basis for disturbances leading to cardiovascular tissue and disease 
states [78,91,138-141].

Table 2: Comparison of serum cholesterol, triglyceride, LDL and ionized 
Mg levels in young normal vs. elderly male T2D subjects.

Age (years) Chol 
(mmol/L)

Trigly 
(mmol/L)

LDL 
(mmol/L) Mg2+ (mmol/L)

25-38 3.8 ± 0.8 1.6 ± 0.4 2.5 ± 0.6 0.68 ± 0.08

77-86 5.5 ± 1.0 2.6 ± 0.6 3.8 ± 0.8 0.58 ± 0.06

All values are ± S.E. M. All values within a group are different from one 
another (P<0.05, ANOVA). All subjects are same as table 1.

Age (years) MDA(U/g Hb) SOD(U/g Hb) GSH(U/g Hb)

23-38 1.28 ± 0.24 5.96 ± 1.04 3.75 ± 0.68

66-76 3.76 ± 0.42 3.46 ± 0.56 2.22 ± 0.14

77-86 4.24 ± 0.48 2.98 ± 0.38 1.88 ± 0.12

Table 3: Progressive serum elevation of MDA concomitant with reduction 
in SOD and GSH in T2D subjects on aging.

All values are means ± S.E.M. All values within a group are different from 
one another (P<0.05). All subjects within a group are the same as in table 1.

Age (years) Serum 4-HNE-His (µmol)

23-38 0.22 ± 0.04

77-86 0.73 ± 0.06

Table 4: Serum elevation of 4-HNE-His adducts in elderly vs. young T2D 
subjects.

All values are means ± S.E.M. Mean values for ages 77-86 years are 
sig. diff. from 28-38 yr olds (P<0.001, t-test). 4-HNE-His analytes were 
determined with ELISA assays.
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ROS, RNS and 4-HNE can lead to various forms of cell death
All of the ROS, RNS and 4-HNE molecules, mentioned above, have 

been found to lead to angiogenesis/atherogenesis [78,116-118] and 
various forms of programmed cell death (i.e., apoptosis, necroptosis), 
which are hallmarks of atherogenesis. We have found, using scanning 
EM, that low Mg diets or primary cultured VSMC exposed to low 
Mg2+ lead to several forms of programmed cell death (i.e., apoptosis, 
necroptosis, ferroptosis, and pyroptosis) [78,110,142-144].

We are convinced that these associations are more than coincidental. 
However, the hypotheses in this paper must remain hypothetical until 
more rigorous studies are completed.

But it is, indeed, of considerable interest, to note here, that 
treatment of T2D as well as T1D subjects with Mg, by different groups 
[6,145-153], including ours [32-34], appears to stabilize these patients 
metabolically and provide a better life style than just diabetic drugs, 
alone, which often have very dangerous side effects.

Daily intake of bioavailable Mg in drinking water should go 
a long-way to the amelioration/prevention of vascular and 
cardiac damage in T2D patients

We believe, at the very least, that the evidence presented here in, 
adds considerable support to the hypothesis suggested more than 
two decades ago [154,155] that water intake (from tap waters, well 
waters, bottled waters, and beverages using tap/well/spring waters) 
in humans varying between one and two liters/day with Mg2+ intakes 
varying from 20 to >100 mg/l , may, as we have suggested recently 
[54,79,86,87,90,138], represent an excellent way to overcome and 
control marginal intakes of Mg obtained with most Western diets 
(with shortfalls of between 250-350 mg Mg/day). Moreover, in 
view of our findings and those of others [6,146-153], it is probably 
propitious to suggest that all desalinated-purified recovered/recycled 
waters, harvested rain waters, well waters, and all bottled waters given 
to humans to drink should be supplemented with bioavailable Mg2+ 

to ameliorate the induction of cardiovascular risk factors, disease 
processes, and the progression of diabetic disease processes worldwide.

Conclusions and Future Thoughts
Herein, we present a summary of recent findings from our 

laboratories which reveal a new hypothesis for why people over the age 
of 60 often develop a T2D disease which has numerous microvascular 
and macrovascular manifestations that are difficult to diagnose 
and treat. Our studies also present cogent reasons for why T2D is 
a multivariate syndrome with numerous pitfalls. T2D appears to 
be due, in origin, to numerous pathophysiological pathways which 
lead to heart failure, elevated PP and strokes. We also present 
observations and investigations on isolated tissues and cells as 
well as T2D patients which we believe support major roles for Mg 
deficiency as a prime trigger leading to the production and release 
of ceramides (and possibly other sphingolipids), phospholipids, 
membrane peroxidation, 4-HNE adducts, PAF molecules, ROS, 
and RNS together with cytokines and adhesion molecules, all of 
which can be ameliorated with Mg supplementation. It is clear that 
our hypothesis can, and should, be tested, particularly as there are 
inhibitors available which can block the synthesis of both ceramides 
and PAF.
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